Technical Report WinSGW

<u>The WinSGW Program</u> – A Powerful Tool for Equilibrium Calculations in Multi Component and Multi Phase Systems

Johan Lindgren and Magnus Karlsson

Inorganic Chemistry Department of Chemistry Umeå University Umeå, Sweden

Technical Report WinSGW 2.x – 2002

<u>The WinSGW Program</u> – A Powerful Tool for Equilibrium Calculations in Multi Component and Multi Phase Systems

Ph. D. Johan Lindgren Inorganic Chemistry, Department of Chemistry, Umeå University, Umeå, Sweden.
Ph. D. Magnus Karlsson Inorganic Chemistry, Department of Chemistry, Umeå University, Umeå, Sweden.

Ph.D. Gunnar Eriksson is truly acknowledged for letting us use the original version of SOLGASWATER and also for invaluable help with changes in the native Fortran code.

The authors are thankful to Professor Lars-Olof Öhman for fruitful discussions and comments on the content of this report.

More information about the program can be found at the WinSGW website: http://www.chem.umu.se/dep/inorgchem/

Updated 2012 to match WINSGW 4.x.

More information is available at http://WWW.WINSGW.SE

Table of contents

1	Intr	oduction	1
2	The	ory	2
	2.1 2.2 2.3 2.4 2.5 2.6 2.7	The equilibrium reaction The Law of Mass Action and the Formation Constant Mass balance equations Temperature dependency of the formation constant Ionic strength dependency of the formation constant Surface charge dependency of the formation constant Unspecific interactions according to Donnan ion exchange theory	3 3 4 5
3	Cal	culations 1	2
	3.1 3.2 3.3 <i>3.3</i> .	Options for simulation 1 Results 1 Diagrams 1 <i>l</i> Predominance area diagrams 1	14 16
4	Lite	rature1	l 7
5	Exa	mples*1	19
	5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8	Create a distribution diagram for the $(H^+-H_3PO_4)$ system	25 28 33 39 44 53 57

1 Introduction

SolGasWater was elaborated at the Department of inorganic chemistry at Umeå University (Eriksson 1979). The program was developed in a DOS environment and enabled computerised calculations of large and complicated chemical equilibrium systems. The program made it possible to carry out these types of calculations on an ordinary computer and therefore became an appreciated tool for analyses of equilibrium systems. During the years a number of modifications of the original code was carried out aiming for a more powerful and flexible program. Due to the evolution of computer technology during the last decade and the wish for a user-friendlier interface, adapted to teaching and non-specialist scientists, an initiative to a new Windows based SolGasWater (WinSGW) was taken in 1999. This initiative together with the results of continuous tests with the program by students and scientists at Umeå University lead to even further development of the original SolGasWater code in cooperation with Gunnar Eriksson. Parallel to this work new models were incorporated to adapt to the present requirements of the scientific world.

2 Theory

All equilibrium analytical calculations are in principle based on the same fundamental concepts and formulaes. These concepts form the general computational basis in WinSGW and are described below.

2.1 The equilibrium reaction

The equilibrium reaction states the type of chemical equilibria that will be used for describing a given chemical system. It gives the relationship between components A, B, C, ... and formed complexes $A_pB_qC_r...$:

$$pA + qB + rC \dots \rightleftharpoons A_p B_q C_r \dots$$
^[1]

where p, q, r,... are the stoichiometric coefficients in the reaction. The phase notations in reaction [1] have been omitted but will be commented on below. Depending on how the components have been chosen, the pqr-values may attain positive or negative values, which means that the component in question is consumed or formed. Negative values are for instance found when component A represents the proton and a deprotonation or hydrolysis reaction is considered. The components A, B, C in [1] can be denoted (1,0,0), (0,1,0) and (0,0,1). This formalism has been shown to be a very convenient basis for the general mathematical-numerical treatment of complicated equilibrium systems. Sillén and his co-workers (Dyrssen 1961) were the first to use it and numerous examples can, for instance, be found in publications from the Departments of Inorganic Chemistry at KTH, Stockholm and at Umeå University.

Following a commonly used nomenclature, both components and complexes will be denoted as species. As a rule, chemically well characterised, preferably mononuclear, species should be chosen as components. The number of components is defined as the smallest number of species by which all other species can be expressed; i.e. the components are the independent variables being used when solving the mass balance equations. For example when H⁺ is chosen as a component, OH⁻ is considered as a complex and vice versa. In WinSGW even solid phases, gas molecules, and active sites on a particle surface will be referred to as species.

In most common cases all species are present in an aqueous phase (aq). However, the WinSGW program can handle other fluid phases as well as coupled equilibria between aqueous species, species in a gas phase, solid phases, species at the surfaces of solid phases (commonly referred to as surface complexes) and species in a Donnan phase. The program can handle up to 300 species formed from a maximum of 15 components, of which 5 can be surface components. Within the calculations a maximum of 31 solid phases are allowed.

2.2 The Law of Mass Action and the Formation Constant

The Law of mass action determines the activity relations between components and formed complexes. Provided that the activity coefficients are kept constant, the concentration of each species, x, can then be calculated from:

$$[x] = \beta \cdot a^p b^q c^r \dots$$
^[2]

where [x] and a, b, c,... are the equilibrium concentrations of the formed species and components respectively, and β is the formation (equilibrium) constant for the species formed. The formation constant is dependent on temperature (*T*), ionic strength (*I*) and, in the case of surface complexes, also the charge at the surface (*cf.* paragraphs 2.4, 2.5 and 2.6).

2.3 Mass balance equations

The total concentration of each component is given by the mass balance equations:

$$A = a + \sum p \cdot \beta \cdot a^p b^q c^r \dots = \sum_x p \cdot [x]$$
[3]

$$B = b + \sum_{x} q \cdot \beta \cdot a^{p} b^{q} c^{r} \dots = \sum_{x} q \cdot [x]$$
[4]

$$C = c + \sum r \cdot \beta \cdot a^p b^q c^r \dots = \sum_x r \cdot [x]$$
[5]

2.4 Temperature dependency of the formation constant

In WinSGW it is possible to perform calculations at other temperatures than the one for which the formation constants are given by using the van't Hoff equation. The van't Hoffs equation can be derived from basic thermodynamic relationships relating the Gibbs free energy and the equilibrium constant. The deviation from a given reference temperature at which the formation constant is given can, accordingly, be calculated:

$$\log \beta_{T_2} = \log \beta_{T_1} - \frac{\Delta H^o}{R \cdot \ln 10} \left(\frac{1}{T_2} - \frac{1}{T_1} \right)$$
[6]

Here β_T is the formation constant at temperature *T* (K), *R* is the molar gas constant and ΔH^o (J/mole) is the molar enthalpy for the reaction. Equation [6] can be used provided that the temperature dependency in ΔH^o can be neglected.

2.5 Ionic strength dependency of the formation constant

The activity of a species, x, is defined as:

$$\{x\} = [x] \cdot f_x \tag{7}$$

where f_x is the activity coefficient for species x. This activity coefficient is dependent on the ionic strength of the solution and, as a consequence, the formation constant is dependent on the ionic strength as:

$$\log \beta = \log \beta^0 + p \log f_a + q \log f_b + r \log f_c + \dots - \log f_x$$
[8]

In this equation β^0 is the formation constant at infinite dilution (ionic strength equal to zero). To model the ionic strength behaviour of activity coefficients, different relationships can be used (Stumm, Morgan 1996). In WinSGW the following five equations are available:

$$\log f = -Az^{2}\sqrt{I}$$
Debye-Hückel [9]
$$\log f = -Az^{2}\left(\frac{\sqrt{I}}{1+B \cdot a\sqrt{I}} - b \cdot I\right)$$
Extended Debye-Hückel [10]
$$\log f = -Az^{2}\frac{\sqrt{I}}{1+\sqrt{I}}$$
Güntelberg [11]
$$\log f = -Az^{2}\left(\frac{\sqrt{I}}{1+\sqrt{I}} - d \cdot I\right)$$
Davies [12]

 $\log f = -Az^{2} \left(\frac{\sqrt{I}}{1 + B \cdot a \cdot \sqrt{I}} \right) + e \cdot I$

Specific Ion interaction Theory [13]

The SIT-model is sometimes also referred to as the Brønsted-Guggenheim-Scatchard (Brönsted 1922; Guggenheim 1935; Scatchard 1936) model and is the preferred model within the NEA Thermochemical Data Base (TDB) project, *e.g.*, (Wanner and Forest, eds. 1992, Olin et al. 2005). In these equations z is the charge of a species and I is the molar ionic strength of the solution. b and d are constants supplied by the user as well as a and e which are species specific constants. A and B are given by the following equations:

$$A = 1.82 \cdot 10^6 \cdot (\mathcal{E}T)^{-\frac{3}{2}}$$
[14]

$$B = 50.3 \cdot (\epsilon T)^{-\frac{1}{2}}$$
[15]

where ε is the dielectric constant of the solvent at the absolute temperature *T*. In WinSGW is not equation [15] used in combination with equation [13], instead is the user asked to give a value for *B*·*a*.

The ionic strength, I (M), is calculated through an iterative process in WinSGW from the resulting species distribution as:

$$I = \frac{1}{2} \sum [x] \cdot z^2 \tag{16}$$

where the electric charge balance requirement is fulfilled via the "Background electrolyte" information supplied. For details, see paragraph 5.4.

In addition to these five relationships between the activity coefficient and the ionic strength (*i.e.*, eqs. [9] to [13]), it is also possible to use the Pitzer theory (simplified) in WinSGW. Details and advantages of this method are described in detail by Harvie and Weare (1980).

2.6 Surface charge dependency of the formation constant

Reactions at the surface/solvent interface will result in charge accumulation at the surface, and the apparent equilibrium constants for the reactions will not be constant. To mathematically model this effect, a handful of electrostatic expressions have been developed according to the theories for electric double layers at such interfaces.

In WinSGW six different electrostatic models can be chosen; the Constant Capacitance Model (CCM), the Extended Constant Capacitance Model (ECCM), the Diffuse Layer Model (DLM), the Stern Model (Stern), the Triple Layer Model (TLM) and the Three Plane Model (TPM). These models describe the relationship between the surface potential, ψ , and the density of charge at a particle surface. Depending on the model, the charge can be distributed over one, two or three planes (*cf.* Figures 1-6). In addition to these planes a diffuse layer of electrolyte ions (with surface potential ψ_{diff}) is present in the DLM, Stern, TLM and TPM models.

The effect of charge accumulation on the formation constant of an individual species can be calculated from:

$$\Delta G_{app} = \Delta G_{int} + \Delta Q_0 F \psi_0 + \Delta Q_1 F \psi_1 + \Delta Q_2 F \psi_2$$
^[17]

where ΔG_{app} and ΔG_{int} are the apparent and intrinsic Gibbs free energies of surface complex formation, respectively. ΔQ_n and ψ_n (mV) are the changes in charges and the surface potential at the 0-, 1- and 2-planes, respectively (ΔQ_n is often referred to as ΔZ_n in the literature). To calculate the overall equilibrium constant the coulombic correction term and the intrinsic equilibrium constant are required. The apparent formation constants, β_{app} , are corrected for coulombic energy to obtain intrinsic constants β_{int} according to:

$$\boldsymbol{\beta}_{(\text{int})} = \boldsymbol{\beta}_{(app)} \cdot e^{\Delta Q_0 F \psi_0 / RT} \cdot e^{\Delta Q_1 F \psi_1 / RT} \cdot e^{\Delta Q_2 F \psi_2 / RT}$$
[18]

where *F* is Faraday's constant. The molar concentration of charge at surface plane *n*, $T(\sigma_n)$, (mol·dm⁻³), can be calculated from:

$$T(\sigma_n) = \sum Q_n \cdot [x]$$
^[19]

and expressed as density of charge at the surface, σ_n , (C·m⁻²):

$$\sigma_n = \frac{T(\sigma_n) \cdot F}{SolCon \cdot SpArea}$$
[20]

where *SolCon* is the concentration of solid $(g \cdot dm^{-3})$ and *SpArea* is the specific surface area of the solid $(m^2 \cdot g^{-1})$.

In the case of the CCM (Schindler, Gamsjäger 1972), ψ_1 , ψ_2 and ψ_{diff} are not defined and ψ_0 is given by:

$$\Psi_0 = \frac{\sigma_0}{C}$$
[21]

where *C* is the specific capacitance $(C \cdot V^{-1} \cdot m^{-2})$. By inserting this value into equation [18] the equilibrium constant can be corrected for electrostatic forces. In Figure 1 the relationship between the potential and the distance from the surface is illustrated.

Figure 1. An illustration of the electrostatic behaviour at the surface/water interface according to the Constant Capacitance Model

For the ECCM (*cf.* Figure 2) (Nilsson *et al.* 1996) in which two planes are present (ψ_2 and ψ_{diff} not defined) the overall specific capacitance, *C*, is given by C_1 (between the 0-plane and the 1-plane) and C_2 (between the 1-plane and the bulk solution) according to:

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2}$$
[22]

The following equations are valid for the relations between the potentials and the charges at the 0-plane and the 1-plane respectively:

$$\psi_1 = \frac{\sigma_0 + \sigma_1}{C_2}$$
[23]

$$\psi_0 - \psi_1 = \frac{\sigma_0}{C_1}$$
[24]

Using these results in equation [18] makes it possible to determine the apparent equilibrium constant.

Figure 2. An illustration of the electrostatic behaviour at the surface/water interface according to the Extended Constant Capacitance Model

In the electrostatic models including a diffuse layer, the charge, σ_{diff} , is obtained from the electro neutrality condition for the particles:

$$\sigma_0 + \sigma_1 + \sigma_2 + \sigma_{diff} = 0$$
^[25]

and the potential in the diffuse layer is given by the Gouy-Chapman equation:

$$\Psi_{diff} = \frac{2 \cdot R \cdot T}{F} \sinh^{-1} \left(\sigma_{diff} \cdot \sqrt{8000 \cdot \varepsilon \cdot \varepsilon_0 \cdot R \cdot T \cdot I} \right)$$
[26]

In this equation I is the ionic strength of the solution (cf. Eq. [16]) and ε_0 is the permittivity of vacuum.

The DLM (Figure 3) (Stumm *et al.* 1970; Huang, Stumm 1973) involves one plane (the 0-plane) and a diffuse layer. The surface charge densities, σ_0 and σ_{diff} , are given by equations [20] and [25]. The potential ψ_{diff} is calculated using equation [26] and the potential at the 0-, 1- and 2-planes are equal to the potential at the diffuse layer $(\psi_0 = \psi_1 = \psi_2 = \psi_{diff})$. By inserting these values into equation [18] the apparent equilibrium constant, β_{app} , can be calculated.

Figure 3. An illustration of the electrostatic behaviour at the surface/water interface according to the Diffuse Layer Model

In the Stern model two planes (the 0-plane and the 2-plane) (Stern 1924; Westall, Hohl 1980) and a diffuse layer are used (Figure 4). As in the DLM case the surface charge densities are given by equations [20] and [25] and the potential in the diffuse layer is given by equation [26]. The surface potential at the 1- and 2-planes are equal to the potential at the head end of the diffuse layer and ψ_0 is obtained from:

$$\psi_0 - \psi_2 = \frac{\sigma_0}{C}$$

By inserting these values into equation [18] the apparent equilibrium constant can be corrected for the charge dependence.

Figure 4. An illustration of the electrostatic behaviour at the surface/water interface according to the Basic Stern Model

The Triple Layer Model (TLM) (Figure 5) (Yates *et al.* 1974; Davis *et al.* 1978) involves two planes (the 0-plane and the 1-plane) and a diffuse layer. The surface charge densities are given in analogy to the previously presented models and surface potentials (ψ_0 , ψ_1 , ψ_{diff}) are obtained using equations [23], [24] and [26]. ψ_2 is given by:

$$\Psi_2 = \Psi_{diff}$$

Using these potentials the charge dependence for the equilibrium constant can be determined.

Figure 5. An illustration of the electrostatic behaviour at the surface/water interface according to the Triple Layer Model

Finally, in the TPM (Hiemstra, Van Riemsdijk 1996) three planes of absorbed ions and a diffuse layer of electrolyte ions are used. The surface charge densities are given by equations [20] and [25], and from equations [23], [24], [26] and [28] the surface potentials are obtained (Figure 6). Inserting these potentials into equation [18] makes it possible to correct the β_{app} -constant for the build-up of electrostatic charges at the surface.

Figure 6. An illustration of the electrostatic behaviour at the surface/water interface according to the Three Plane Model

2.7 Unspecific interactions according to Donnan ion exchange theory

The Donnan equations (Donnan, Harris 1911) used in WinSGW were derived to describe the distribution of ions between a water volume confined to a wood fibre and a suspension liquid in a pulp suspension. Therefore it is assumed that at least one negatively charged surface species ($Q_0 < 0$) is present. It is also assumed that this charged surface species has access to the fibre volume (commonly referred to as the Donnan volume) and gives rise to a potential, which results in an uneven distribution of ions between the two sub-volumes. In WinSGW it is also possible to define two charged surface species giving rise to this potential and to calculate the distribution of ions with charge from -5 to +7. According to the Donnan theory (Towers, Scallan 1996), the distribution of an ion x between the Donnan volume (f) and the suspension liquid (s) is given by:

$$\lambda = \left(\frac{\left[x^{z}\right]_{f}}{\left[x^{z}\right]_{s}}\right)^{\frac{1}{z}}$$
[29]

where λ is the distribution coefficient and *z* is the charge ($-5 \le z \le 7$). In both of the aqueous volumes, the requirement of electric neutrality must be met, i.e. the total positive charge must equal the total negative charge. This can be expressed as:

$$\sum_{z=-5}^{-1} |z| \cdot [x^z]_s = \sum_{z=1}^{7} z \cdot [x^z]_s$$
[30]

$$\sum |Q_0| \cdot [\equiv x]_f + \sum_{z=-5}^{-1} |z| \cdot [x^z]_f = \sum_{z=1}^{7} z \cdot [x^z]_f$$
[31]

where $\equiv x$ is the Q_0 charged surface species giving rise to the Donnan potential. By combining these equations with the mass balance equation an expression that contains the total concentrations, total aqueous volume, specific Donnan volume, the mass of fibre and λ is obtained. The following equation is an example of this relationship

$$(\lambda^{2} - 1) \cdot [H^{+}]_{s} + (\lambda^{2} - 1) \cdot \frac{\sum [x^{+}]_{TOT} \cdot V_{TOT}}{V_{TOT} + D \cdot m_{f} \cdot (\lambda - 1)} + 2 \cdot (\lambda^{3} - 1) \cdot \frac{\sum [x^{2+}]_{TOT} \cdot V_{TOT}}{V_{TOT} + D \cdot m_{f} \cdot (\lambda^{2} - 1)} + 3 \cdot (\lambda^{4} - 1) \cdot \frac{\sum [x^{3+}]_{TOT} \cdot V_{TOT}}{V_{TOT} + D \cdot m_{f} \cdot (\lambda^{3} - 1)} - \lambda \cdot \frac{[\equiv x^{-}] \cdot V_{TOT}}{D \cdot m_{f}} = 0$$

$$[32]$$

Equation [31] is valid in a system where only protons, monovalent anions and mono-, diand trivalent cations are present. Furthermore, only one type of site is present on the fibre. In the equation, $[x^{z^+}]_{TOT}$ denotes the total concentration of cations with charge z, V_{TOT} is the total volume, m_f is the mass of fibre used in the experiment and D denotes the specific Donnan volume per unit weight. The Donnan ion exchange theory applied to pulp systems has been described in detail in the literature, *e.g.* Lindgren *et al.* 2001, Norberg *et al.* 2001, Norberg *et al.* 2002.

3 Calculations

The calculation in WinSGW follows the equations described above. The calculations are performed by an updated version of the SOLGASWATER (Eriksson 1979) program in which the free-energy minimisation method is applied to systems containing fluid (aqueous), gaseous, solid, surface and Donnan phases.

The requested input to the program is:

a) a coherent description of all the equilibrium reactions that operates in the system and b) an instruction with regard to the actual chemical conditions under which the system is to be simulated.

With respect to the first issue, a set of components are chosen (*cf.* paragraph 2.1) and, from these, the stoichiometric compositions and equilibrium constants for all appearing species logically follows. A series of numerical examples illustrating this procedure are presented in paragraphs 5.1, 5.2, 5.4, 5.5, and 5.6. Also illustrated in paragraphs 5.1 and 5.6 is the fact that this choice can be made in several ways, especially when the system includes weak acids and/or redox reactions.

With respect to the second issue many options are available to the user, including both discrete point calculations and serial calculations. The options are designed to allow for the user to calculate the equilibrium composition when the total or free concentrations of the components are known, or to calculate the composition necessary to reach a given point, but they are also designed to make it possible to simulate titration curves, Z-curves, logarithmic diagrams, distribution diagrams, predominance area diagrams (so-called "Pourbaix diagrams" when describing redox systems), and so on. Many of these latter options are exemplified in paragraph 5.

When numerically defining the total concentration corresponding to a certain discrete point an intellectual challenge is sometimes met since, depending on the choice of components, the total concentration of H^+ (and e^-) can attain a negative value. This follows mathematically from the fact that OH⁻, and species which are more deprotonated than the chosen weak acid(s) component(s), are assigned negative proton stoichiometric coefficients in the chemical matrix. (With respect to the electron content, this same holds for redox species which are more oxidized than the component chosen.)

A numerical example illustrating the situation is presented in the latter part of paragraph 5.1. The interconnection between the component choice and the numerical value of the total proton (electron) concentration, and the independence of the equilibrium composition, is of utmost importance to realize.

Also vitally important to keep in mind when dealing with redox systems, is that $\{e^{-}\}\$ denotes a formal activity and <u>not</u> a chemical concentration. Therefore, this component should always be assigned "Not Use" in the input matrix, *cf.* paragraph 5.4. By this, the program correctly calculates the activity but puts the chemical concentration to zero.

3.1 Options for simulation

The list presented below shows the available choices open to the user. For each component in the system, one of the options is chosen on the "Variation for Each Component" tab. Depending on the choices made, different information is requested on the "Input data: Each component" tab and, if surfaces are being included, the "Input data: Surfaces" tab.

Tc: Total Concentration for the actual component **a**: Activity for the free amount of the actual component

- *Option 1*: **Tc** varies <u>irregularly</u> between each point
- *Option 2*: **Tc** is <u>constant</u>
- *Option 3*: **Tc** varies with <u>constant steps</u>
- *Option 4*: **Tc** varies through <u>varied volume-additions</u>
- Option 5: Tc varies through <u>constant volume-additions</u>
- *Option 6*: log **Tc** varies with <u>constant steps</u>
- *Option 7*: log **Tc** is dependent variable in predominance diagram
- *Option 8*: log **a** varies <u>irregularly</u>
- *Option 9*: log **a** is <u>constant</u>
- *Option 10*: log **a** varies with <u>constant steps</u>
- *Option 11*: log **a** is dependent variable in predominance diagram

For surface components the following options are available

- Option 20: Conc. of solid phase is constant
- Option 21: Conc. of solid phase varies with constant steps
- *Option 22:* Conc. of **solid phase** varies through titration with <u>constant</u> <u>volume-additions</u>
- Option 23: Conc. of solid phase varies irregularly

3.2 Results

The calculations result in a matrix of data containing all necessary information about the equilibrium composition of the actual system. This information includes total concentrations of all components, concentrations of all species and corresponding activities. The matrix also includes the volume added, the total volume and the amounts of solids formed etc.

This data is used within WinSGW to calculate all optional quantities in the "Display Calculation Results" window.

The unreferit options are.	
$[\mathbf{x}]$ (mM) Conc	Concentration of the selected species or component in
[x] (mM) Conc.	milli molar units $(10^{-3} \text{ mol} \cdot \text{dm}^{-3})$.
1 (1.104)	Logarithm of the selected species or component
log ([x]/M)	concentration in molar units (mol·dm ⁻³).
	The negative logarithm of the selected species or
- log ([x]/M)	component concentration in molar units (mol·dm ⁻³). Use
	this option to display pH.
{a} Activity	Activity of the selected species or component.
· · · · ·	(cf. paragraph 2.5.)
log {a}	Logarithm of the activity.
To (mM) Total come	Total concentration of selected component in the system
Tc (mM) Total conc.	$(10^{-3} \text{ mol dm}^{-3}).$
	Logarithm of the absolute total concentration Tc. Total
log (Tcl / M)	concentration in molar units (mol ⁻ dm ⁻³).
	Total concentration of selected component in the fluid
Tf (mM) Total Conc. In	(aqueous) phase (excluding solid phases) in milli molar
Fluid	units $(10^{-3} \text{ mol} \text{ dm}^{-3})$.
	Logarithm of the absolute total concentration Tf
log (Tfl / M)	$(\text{mol} \cdot \text{dm}^{-3}).$
	Total concentration of selected component in fluid
Ts (mM) Total Conc. in	(aqueous) phase (excluding solid and surface phases) in
Solution	milli molar units $(10^{-3} \text{ mol dm}^{-3})$.
	The distribution of a component between the species.
	Solid phases are not included.
Fi (aq)	$F_{x}(aq) = n \cdot [x] / T_{f}.$
1 1 (uq)	where n is the stoichiometric coefficient (cf. paragraph
	2.1) for the component in species x, <i>i.e.</i> Fi (aq) is
	corrected for polynuclearity $(n > 1)$.

The different options are:

Fi (s)	The distribution of a component between the species. Solid phases included $F_x (s) = n \cdot [x] / T_c$. where n is the stoichiometric coefficient (<i>cf.</i> paragraph 2.1) for the component in species x, <i>i.e.</i> Fi (s) is corrected for polynuclearity (n > 1). The average number of component A bound to another component (B). <i>E.g.</i> : Number of protons (component A)
Z	bound to component B is calculated as $Z = \frac{A_{TOT} - [H^+] + [OH^-]}{B_{TOT}}$
n-bar	The average number of one component, regarded as a ligand, bound to unit amount of another component, regarded as the central atom. <i>E.g.</i> : Number of component B bound to component C is calculated as $\overline{n} = \frac{\sum q[A_p B_q C_r]}{C_{TOT}}$
$Vt (cm^3)$	Added volume in a simulated titration (cm ³).
Vtot / Donnan volume (cm ³)	Total volume in cm ³ if "None" is chosen. The Donnan volume is obtained if the Donnan active surface component is chosen.
Dominating species	The species with the highest concentration containing the chosen component. <i>N.B.</i> this function is not corrected for polynuclearity ($n > 1$), <i>cf.</i> calculation of Fi (aq).
Conc. Surface Phase (g/dm ³)	The solid phase concentration of the chosen surface component (<i>cf.</i> Eq [20]).
Surface Pot. (mV)	The surface potential (ψ) for the chosen surface component at the specified plane or diffuse layer (Eq [18]).
Surf. Cha. (mol/dm ³)	The surface charge, $T(\sigma_n)$, for the chosen surface component at the specified plane (Eq [19]).
Ionic strength (mM)	The ionic strength of the solution Eq [16].
log B / lambda	The apparent log β value [8] for the chosen species or, if no species is chosen, the Donnan distribution coefficient λ , equation [29].
Empty	Clears the chosen column.

3.3 Diagrams

The results shown in the "Display Calculation Results" window (described above), and chosen by the user, can be plotted in a diagram. For the construction of diagrams of various types, such as distribution diagrams, pH diagrams, solubility diagrams, n-bar diagrams, titration curves and so forth, the proper dependent (y-axis) and independent variables (x-axis) are combined. The user makes these choices on the "Define Columns to Plot" window. It is furthermore possible to enter a restriction for the plotting (low limit value), *i.e.* a curve is not plotted if its highest y-value is below the limit value.

3.3.1 Predominance area diagrams

In addition to the user defined diagrams it is possible to make predominance area diagrams where the species of the highest concentration are shown. The input for this type of diagram is made before the calculation at the right on the "Variation for each component" tab in the "Input for Solgaswater Calculation" window. There it is possible to chose for which component the diagram should be constructed, if solids should be included, and if polynuclearity (formula units) should be considered (*cf.* paragraph 5.4).

4 Literature

Brønsted, J.N. (1922): J. Am. Chem. Soc. 44 877.

Davis, J.A., James, R.O. and Leckie, J.O. (1978): Surface ionization and complexation at oxide/water interface. I: Computation of electrical double layer properties in simple electrolytes, *J. Colloid Interface Sci.* 63, 480.

Donnan, F. and Harris, A. (1911): The osmotic pressure and conductivity of aqueous solutions of Congo-red, and reversible membrane equilibria. *J. Chem. Soc.* 99: 1554.

Dyrssen, D., Ingri, N. and Sillén, L.G. (1961): "Pit-mapping" – a general approach for computer refining of equilibrium constants, *Acta Chem. Scand.* 15, 694.

Eriksson, G. (1979): An algorithm for the computation of aqueous multicomponent, multiphase equilibria, *Anal. Chim. Acta* 112, 375.

Guggenheim, E.A. (1935): Philos. Mag. 19 588.

Harvie, C.E. and Weare, J.H. (1980): The prediction of mineral solubilities in natural waters: The Na-K-Mg-Ca-Cl-SO₄-H₂O system from zero to high concentration at 25°C, *Geochim. Cosmochim. Acta* 44, 981.

Hiemstra, T. and Van Riemsdijk, W.H. (1996): A surface structural approach to ion adsorption: The charge distribution (CD) model, *J. Colloid Interface Sci.*, 179, 488.

Huang, C.P. and Stumm, W. (1973): Specific adsorption of cations on hydrous α -Al₂O₃, *J. Colloid Interface Sci.* 22, 231.

Lindgren, J., Wiklund, L. and Öhman, L.-O. (2001): The contemporary distribution of cations between bleached softwood fibres and the surrounding bulk solution, as a function of $-\log[H^+]$, ionic strength and temperature,*Nordic Pulp Paper Res. J.*, 16(1), 24.

Nilsson, N., Persson, P., Lövgren, L. and Sjöberg, S. (1996): Competitive surface complexation of o-phthalate and phosphate on goethite (α -FeOOH) particles, *Geochim. Cosmochim. Acta* 60, 4385.

Norberg, C., Lidén J., Lindgren, J. and Öhman, L.-O. (2002): Some practical aspects of the metal ion chemistry in pulp processes, SPCI 7th International Conference on New Available Technologies, Stockholm.

Norberg, C., Lidén, J. and Öhman, L.-O. (2001). Modelling the distribution of "free", complexed and precipitated metal ions in a pulp suspension using Donnan equilibria, *J. Pulp Paper Sci.* 27(9): 296.

Olin, Å, Noläng, B., Osadchii, G., Rosen, E. and Öhman, L.-O. (2005): Chemical Thermodynamics of Selenium, Elsevier.

Scatchard, G. (1936): Chem. Rev. 19 309.

Schindler, P.W. and Gamsjäger, H. (1972): Acid-base reactions of the TiO_2 (Anatase) - water interface and the point of zero charge of TiO_2 suspensions, *Kolloid Z. u. Z. Polymere* 250, 759.

Stern, O., (1924): Zur theory der electrolytischen doppelschicht, Z. Electrochem., 30, 508.

Stumm, W., Huang, C.P. and Jenkins, S.R. (1970): Specific chemical interactions affecting the stability of dispersed systems, *Croat. Chem. Acta* 42, 223.

Stumm, W. and Morgan, J.J. (1996): "Aquatic Chemistry" 3rd ed., John Wiley & Sons Inc., New York.

Towers, M. and Scallan, A. (1996): Predicting the ion-exchange of kraft pulps using Donnan theory, *J. Pulp Paper Sci.* 22: 332.

Wanner, H. and Forest, I., eds. (1992): Chemical Thermodynamics of Uranium, North Holland.

Westall, J. and Hohl, H. (1980): A comparison of electrostatic models for the oxide/solution interface, *Adv. Colloid Interface Sci.*, 12, 265.

Yates, D.E., Levine, S. and Healy, T.W. (1974): Site-binding model of the electrical double layer at the oxide/water interface, *J. Chem. Soc., Faraday Trans. 1.* 70, 1807.

5 Examples*

The majority of the equilibrium constants employed have been collected from Stumm, W. and Morgan, J. J., *Aquatic Cemistry*, 3^{rd} ed.. "pH" is regularly used to denote $-\log[H^+]$.

5.1 Create a distribution diagram for the (H⁺-H₃PO₄) system

Task: Plot a diagram showing the distribution of phosphate species as a function of pH at a total phosphoric acid concentration of 10 mM.

1. The following four equilibrium reactions describe a dilute phosphoric acid system.

		log β*
1	$H_2O \rightleftharpoons H^+ + OH^-$	-14.00
2	$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+$	-2.15
3	$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$	-7.20
4	$\text{HPO}_4^{2-} \rightleftharpoons \text{PO}_4^{3-} + \text{H}^+$	-12.35

*Equilibrium constants valid at infinite dilution and at 25°C.

2. Define chemical components that can describe all species present (H^+ , OH^- , H_3PO_4 , $H_2PO_4^-$, HPO_4^{2-} and PO_4^{3-}). Components: a) H^+ and H_3PO_4 ; b) H^+ and PO_4^{3-}

3. Write a chemical matrix using the components and the equilibrium reactions.

a)	log β	H^{+}	H ₃ PO ₄	Equilibria Nos.
H^{+}	0	1	0	
H ₃ PO ₄	0	0	1	
OH	-14.00	-1	0	1
$H_2PO_4^-$	-2.15	-1	1	2
HPO_4^{2-}	-9.35	-2	1	2 + 3
PO_4^{3-}	-21.70	-3	1	2 + 3 + 4

b)	log β	H^+	PO_4^{3-}	Equilibria Nos.
H^+	0	1	0	
PO_4^{3-}	0	0	1	
OH	-14.00	-1	0	1
HPO_4^{2-}	12.35	1	1	- 4
$H_2PO_4^-$	19.55	2	1	- 4 - 3
H ₃ PO ₄	21.70	3	1	- 4 - 3 - 2

*Due to a continous development of the program, the screen captures in this section will not always be identical to those appearing in the latest version of the WinSGW software.

4. Start WinSGW and choose "New Chemical Matrix" from the "File" menu. Since WinSGW has three components as default value, remove one by clicking on a "C" in the "C*" column.

hemi	ical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent		nput data: Each component	Input	data: Surfaces	Ionic Media, Donna Iemperature
	Data File:			'pqr' Matrix		-	-
	Species	log B	C×		Phase	Usage -	
1		0	С		Soluble	Use	
2		0	С		Soluble	Use	
3		0	G		Soluble	Use	
4			45		Soluble	Use	
5					Soluble	Use	
6					Soluble	Use	
7					Soluble	Use	
8					Soluble	Use	
9					Soluble	Use	
10					Soluble	Use	
11					Soluble	Use	
12					Soluble	Use	
13					Soluble	Use .	-1
	A <u>b</u> out	Use Donn	<u>S</u> trengl an Moo at a Dif	h Calculations dels for Surface (ferent Temperati Dependent Cor	ure (<u>2</u> 5 C is de	efault)	

5. Enter the matrix. Blanks in the matrix will be interpreted as zeros by the program. By clicking the right mouse button in the brownish line number column it is possible to insert, clear and/or delete rows in the matrix.

	on for Each mponent		Input co	mpone		Input data: {	Surfaces	Ionic Media, Donnan and Temperature	Che	mical <u>M</u> atrix	Variation fo Compo				data: E impone		<u>I</u> nput data:	Surfaces	Ionic Media, Donnar <u>T</u> emperature
Data File: Exempel1			'pqr' l	Matrix			^			Data File	Example1b			'pqr'	Matrix			^	
Species	log B	C×	H+	H3P	Phase	Usage				Species		log B	C×	H+	P04	Phase	Usage		
1 H+	0	С	1	0	Soluble	Use			I –	1 H+		0	С	1	0	Soluble	Use		
2 H3P04	0	С	0	1	Soluble	Use			I –	2 P043-		0	С	0	1	Soluble	Use		
3 OH-	-14	_	-1	0	Soluble	Use				3 OH-		-14		-1	0	Soluble	Use	_	
4 H2PO4-	-2.15		-1	1	Soluble	Use				4 HP042-		12.35			1	Soluble	Use	_	
5 HP04 2-	-9.35		-2	1	Soluble	Use				5 H2PO4 ·		19.55		2		Soluble	Use		
6 PO4 3-	-21.7		-3	1	Soluble	Use				6 H3PO4		21.7		3	1	Soluble	Use		
7					Soluble	Use				7						Soluble	Use		
8					Soluble	Use				8						Soluble	Use		
9					Soluble	Use				9						Soluble	Use		
10					Soluble	Use				0						Soluble	Use		
11					Soluble	Use				1						Soluble	Use		
12					Soluble	Use				2						Soluble	Use		
13					Soluble	Use	~			3						Soluble	Use	~	
	"C = Compone	ents									*C =	= Compone	ents						
	Use Ionic ;	Stren	gth Ca	Iculati	ons							Use Ionic S	treng	th Ca	Iculatio	ons			
	🗖 🛄 se Donni	an Mo		or Surl	ace Comple:	xation					E J	Jse Donna	m Mo		or Surf	ace Comple	xation		
About	Calculate a	at a D	ifferen	t Tem	perature (25	C is default)				About		Calculate a	t a Di	fferer	nt Temp	perature (25	C is default	1	

6. Move to next tab "Variation for each component". At this tab we choose which kind of calculation we aim at. There is a description of the possible choices in the yellow text box. For this example we would like to vary pH in constant steps (Component 1 H^+ , option 10) and to keep the total phosphoric acid concentration constant (Component 2 H_3PO_4 , option 2).

Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each component	Input data:	Surfaces		a, Donnan a Iperature
Component 1 H+ 1 C 2 C 3 C Component 2 H3F	or Each Component: 4 C 5 C 6 C 7 C 204 4 C 5 C 6 C 7 C	log a-Const	ant steps	Predomina For compo Incl. sc Incl. all Correct Plot with	olids of com L <u>s</u> olids	diagram 💌 ponent a units
				sign on:		<u>□</u> +/:
he different opti	ons above, corresponds to	the following				
arameters for th c: Total Concen	ons above, corresponds to e components tration for the actual comp free amount of the actual	oonent	-			

7. Move to next tab "Input data: Each component". Enter Start value "log {a}", Step length "Step" for the first component (H⁺), total concentration of phosphoric acid "Tc" and the number of points. The program will calculate the log {a} value in the last calculated point. In this position, it is advisable to save and/or print the matrix and the input on the File menu.

8. Start the calculation by pressing the "Calculate" button or use the Calculate menu.

9. Viewing the result.

Choose H^+ in the Component/Species box and then "-log {[x]/M}" to view pH in column 1. Move to the next column. To display the distribution of H_3PO_4 choose a "phosphorus containing species" in the Component/Species box, "Fi (aq)" and H_3PO_4 in the box next to "Fi (aq)". Repeat these steps for the remaining phosphate species.

efine Column Contents	Calculation	Results:							
	Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	
Column No: Component/Species:	Spec/Comp:	H+	H3P04	H2P04-	HP04 2-	P04 3-			1
5 🕂 PO4 3- 💌	Content:	log ([x]/M)		⁻ ii (aq) (H3PO4)					I.
	1	0.000	0.993	0.007	0.000	0.000			
[x] (<u>m</u> M) Conc.	2	0.100	0.991	0.009	0.000	0.000			
log ([x]/M)	4	0.200	0.989	0.011	0.000	0.000			
: log ([x]/M)	- 4 5	0.300	0.986	0.014	0.000	0.000			
{a} (M) Activity	- 5	0.400	0.983	0.017	0.000	0.000			
	7	0.600	0.978	0.022	0.000	0.000			
log { <u>a</u> } ({a}/M)	8	0.700	0.966	0.027	0.000	0.000			
If (mM) Total Conc. in Fluid	9	0.800	0.957	0.034	0.000	0.000			
log(<u>1</u> f /M)	10	0.900	0.947	0.053	0.000	0.000			
Ts (mM) Total Conc. in Solution	11	1.000	0.934	0.066	0.000	0.000			
	12	1.100	0.918	0.082	0.000	0.000			
	13	1.200	0.899	0.101	0.000	0.000			
log(Tc /M)	14	1.300	0.876	0.124	0.000	0.000			
Fi (ag) / C Fi (s) H3P04 🔽	15	1.400	0.849	0.151	0.000	0.000			
Z None 🔻	16	1.500	0.817	0.183	0.000	0.000			
n-bar None 🔻	17	1.600	0.780	0.220	0.000	0.000			
n-bar None 💌	18	1.700	0.738	0.262	0.000	0.000			
	19	1.800	0.691	0.309	0.000	0.000			
Vtot / Donnan volume (cm3)	20	1.900	0.640	0.360	0.000	0.000			
Dominating Species	21	2.000	0.585	0.415	0.000	0.000			
Conc. Surface Phase (g/dm3)	22	2.100	0.529	0.471	0.000	0.000			
	23	2.200	0.471	0.529	0.000	0.000			
Surface Pot. (mV) None 💌	24	2.300	0.414	0.585	0.000	0.000			
Surf. Cha. (mol/dm <u>3)</u> None	25	2.400	0.360	0.640	0.000	0.000			
[onic Strength (mM)	26				0.000				
	27	2.600	0.262	0.738	0.000	0.000			
Empty	28	2.700	0.220	0.817	0.000	0.000			

Display Calculation Results		_						
Define Column Contents	Calculation Column:	Results: Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
Column No: Component/Species:	Spec/Comp:	H+	P043-	HP04.2-	H2P04 -	H3P04	Columno	Column 7
5 H3P04 -	Content:	- log ([x]/M)	Fi (aq) (PO4 3-1	Fi (aq) (PO4 3-1	Fi (aq) (P04 3-1	Fi (aq) (P04 3-1		
	1	0.000	0.000	0.000	0.007	0.993		
C [x] (mM) Conc.	2	0.100	0.000	0.000	0.009	0.991		
	3	0.200	0.000	0.000	0.011	0.989		
iog ([x]/M)	4	0.300	0.000	0.000	0.014	0.986		
🗋 : log ([x]/M)	5	0.400	0.000	0.000	0.017	0.983		
(M) Activity	6	0.500	0.000	0.000	0.022	0.978		
) log {a} ({a}/M)	7	0.600	0.000	0.000	0.027	0.973		
) Tf (mM) Total Conc. in Fluid	8	0.700	0.000	0.000	0.034	0.966		
	9	0.800	0.000	0.000	0.043	0.957		
) log(]f /M)	10	0.900	0.000	0.000	0.053	0.947		
Ts (mM) Total Conc. in Solution	11	1.000	0.000	0.000	0.066	0.934		
🖱 Tic (mmoj/dm3) Tiotal Conc.	12	1.100	0.000	0.000	0.082	0.918		
) log(Tc /M)	13	1.200	0.000	0.000	0.101	0.899		
Fi(ag) / C Fi (a) P04 3-	14	1.300	0.000	0.000	0.124	0.876		
	15	1.400	0.000	0.000	0.151	0.849		
∑ None ▼	16	1.500	0.000	0.000	0.183	0.817		
n-bar None 💌	17	1.600	0.000	0.000	0.220	0.780		
,	18	1.700	0.000	0.000	0.262	0.738		
○ Vt (cm <u>3)</u>	19	1.800	0.000	0.000	0.309	0.691		
Vtot / Donnan volume (cm <u>3)</u>	20	1.900	0.000	0.000	0.360	0.640		
Dominating Species	21	2.000	0.000	0.000	0.415	0.585		
Conc. Surface Phase (g/dm3)	22	2.100	0.000	0.000	0.471	0.529		
	23	2.200	0.000	0.000	0.529	0.471		
🖱 Surface <u>P</u> ot. (mV) None 💌	24	2.300	0.000	0.000	0.585	0.414		
Surf. Cha. (mol/dm3) None 🚽	25	2.400	0.000	0.000	0.640	0.360		
Jonic Strength (mM)	26	2.500	0.000	0.000	0.691	0.309		
log <u>B</u> / lambda		2.600	0.000	0.000	0.738	0.262		
	28	2.700	0.000	0.000	0.780	0.220		

Note that the results employing the two different choices of components, of course, are identical.

10. Plotting the results

Choose "Plot calculation data" from the "Diagrams" menu.

The default setting is that the first column in the Calculation Result grid contains X-values and all remaining columns will be plotted on the Y-axis. It is possible to remove a series from the Plot Columns list by clicking on the series. As an option you can choose to exclude all curves that never exceed a given minimum value.

Continue by pressing "Plot diagram".

11. The diagram

You can modify your chart by using the top buttons, e.g. change the scale, labels, lines and symbols, or print your diagram.

12. Without any renewed calculation, it is also possible to generate other relevant diagrams describing the system. This is made by returning to the "Display Calculation Results", changing the column contents to the new information of interest, and plotting these as described above.

5.1.1 Calculate the equilibrium compositions for a series of phosphate solutions

A series of solutions were prepared by mixing equal volumes of:

- i) 10 mM HCl and 10 mM H₃PO₄
- ii) 10 mM NaOH and 10 mM H₃PO₄
- iii) 10 mM H₃PO₄ and 10 mM NaH₂PO₄
- iv) 5 mM NaOH and 10 mM Na₂HPO₄
- v) 10 mM NaH₂PO₄ and 10 mM Na₃PO₄
- vi) 10 mM NaOH and 10 mM Na₃PO₄

Task: Calculate the equilibrium pH and the distribution between different phosphate species.

1a). With H^+ and H_3PO_4 as components, the total concentrations in the 6 solutions are:

i) $[H]_{tot} = (1 \cdot 10 + 0)/2 \text{ mM} = 5 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ ii) $[H]_{tot} = (-1 \cdot 10 + 0)/2 \text{ mM} = -5 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ iii) $[H]_{tot} = (0 + (-1) \cdot 10)/2 \text{ mM} = -5 \text{ mM};$ $[P]_{tot} = (10 + 10)/2 \text{ mM} = 5 \text{ mM}$ iv) $[H]_{tot} = (-1 \cdot 5 + (-2) \cdot 10)/2 \text{ mM} = -12.5 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ v) $[H]_{tot} = (-1 \cdot 10 + (-3) \cdot 10)/2 \text{ mM} = -20 \text{ mM};$ $[P]_{tot} = (10 + 10)/2 \text{ mM} = 10 \text{ mM}$ vi) $[H]_{tot} = (-1 \cdot 10 + (-3) \cdot 10)/2 \text{ mM} = -20 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$

1b). With H^+ and PO_4^{3-} as components, the total concentrations are:

i) $[H]_{tot} = (1 \cdot 10 + 3 \cdot 10)/2 \text{ mM} = 20 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ $[H]_{tot} = (-1.10 + 3.10)/2 \text{ mM} = 10 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ ii) iii) $[H]_{tot} = (3.10 + 2.10)/2 \text{ mM} = 25 \text{ mM};$ $[P]_{tot} = (10 + 10)/2 \text{ mM} = 10 \text{ mM}$ $[H]_{tot} = (-1.5 + 1.10)/2 \text{ mM} = 2.5 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ iv) $[H]_{tot} = (2 \cdot 10 + 0)/2 \text{ mM} = 10 \text{ mM};$ $[P]_{tot} = (10 + 10)/2 \text{ mM} = 10 \text{ mM}$ v) $[H]_{tot} = (-1.10 + 0)/2 \text{ mM} = -5 \text{ mM};$ $[P]_{tot} = (0 + 10)/2 \text{ mM} = 5 \text{ mM}$ vi)

Note that the multiplication factors for calculating $[H]_{tot}$ are exactly the same as those appearing in the chemical matrix, *cf.* p. 19.

2. Start WinSGW and choose "Open" from the "File" menu. Retrieve the file "Example1a.cti" which was (hopefully) saved in the previous session. Otherwise, choose "New Chemical Matrix" and re-enter the matrix. 3. Move to the tab "Variation for each component". This time we want to enter 6 discrete data points where both total concentrations varies irregularly between the points (Component 1 H⁺, option 1; Component 2 H₃PO₄, option 1).

4. Move to next tab "Input data: Each component" and enter the numerical values of H_{tot} and P_{tot}

S Input for Solgaswater Calculation	🗟 Input for Solgaswater Calculation
Chemical Matrix Variation for Each Component Input data: Each Input data: Surfaces Ionic Media, Donnan and Imperature	Chemical Matrix Variation for Each Component Input data: Each Component Input data: Surfaces Ionic Media, Donnan and Imput data: Surfaces Ionic Media, Donnan and
Tep/fer H+ H3P04 log Te(M) 10 log ta(0) 1 Tebp, (mM) 1 Step 0.1 Fird value 1 s 5 lass 1 lass 1	T c (m) H + P04 3 log (rd) 10 10 log (a) 0 1 T c by, (m) 1 10 log (a) 0 1 Ford vala 5 1 log (a) 1 0 log (a) 0 1 Ford vala 5 1 log (a) 2 5 log (a) 2 5 log (a) 2 5 log (a) 5 1 valision 5 5 g 3 2 static value minite value value static value minite value minite value No. of points 11 No of groups in Predommence dagan
Calculate	Calculate

5. Calculate

6. Choose H^+ in the Component/Species box and then "Tf (mM) Total Conc in Fluid" to display H_{tot} in column 1. Move to the next column and display P_{tot} . The resulting $-\log[H^+]$ and the distribution between the different phosphate species are displayed as in previous session.

Display Calculation Results									IJ
Define Column Contents	Calculation								_
	Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	
Column No: Component/Species:	Spec/Comp:	H+	H3P04	H+	H3P04	H2P04-	HP04 2-	P04 3-	
7 ÷ P04 3· ·	Content:	Tf (mM)	Tf (mM)	- log ([x]/M)		⁻ ii (aq) (H3PO4)			ŧ
	1	5.000 -5.000	5.000 5.000	2.129	0.512	0.488	0.000	0.000	
[x] (<u>m</u> M) Conc.	3	-5.000	10.000	2.613	0.002	0.555	0.000	0.000	
🗇 log ([x]/M)	4	-12,500	5.000	11.317	0.236	0.000	0.000	0.000	
ilog ([x]/M)	5	-20.000	10.000	9.519	0.000	0.005	0.994	0.000	
(M) Activity	6	-20.000	5.000	11.935	0.000	0.000	0.722	0.278	
C log {a} ({a}/M)	7								
C Tf (mM) Total Conc. in Fluid	8								
	9								
C log(I <u>I</u> fI/M)	10								
C Ts (mM) Total Conc. in Solution	11								
C Tc (mmol/dm3) Total Conc.	12								
🔿 [og([Tc]/M])	13								
🖲 Fi (ag) / C Fi 👔 H3P04 🛛 💌	14				<u> </u>				
C Z None 👻	16								
	17								
Cin-bag None 💌	18								
C Vt (cm3)	19								
Vtot / Donnan volume (cm3)	20								
C Dominating Species	21								
Conc. Surface Phase (g/dm3)	22								
	23								
C Surface Eot. (mV) None 💌	24								
C Surf. Cha. (mol/dm3) None 🖃	25				-				
C Lonic Strength (mM)	26								
🖒 log 🗄 / lambda	27								
C Empty	20								
r mbr¥	<		-	-				>	

Display Calculation Results									
Define Column Contents	Calculation	Results:							
	Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	^
Column No: Component/Species:	Spec/Comp:	H+	P04 3-	H+	P04 3-	HP04 2-	H2P04 -	H3P04	
7 🕂 H3P04 💌	Content:	Tf (mM)	Tf (mM)	- log ([x]/M)			Fi (aq) (PO4 3-)		
	1	20.000	5.000	2.129	0.000	0.000	0.488	0.512	-
[x] (<u>m</u> M) Conc.	2	10.000 25.000	5.000 10.000	4.867 2.613	0.000	0.005	0.993	0.002	-
C log ([x]/M)	4	25.000	5.000	11.317	0.000	0.000	0.744	0.256	-
○ : log ([x]/M)	- 4	10.000	10.000	9.519	0.000	0.994	0.000	0.000	
C {a} (M) Activity	6	-5.000	5.000	11.935	0.278	0.722	0.000	0.000	
C log (a) ((a)/M)	7	0.000	0.000	11.000	0.210	0.122	0.000	0.000	-
C Tf (mM) Total Conc. in Fluid	8								
	9								
C log (1 <u>I</u> f17M)	10								
C Ts (mM) Total Conc. in Solution	11								
C Tc (mmol/dm3) Total Conc.	12								-
C log([Tc[/M])	13								-
€ Fi(ag) / C Fi(s) P043. ▼	14				· · · · · · · · · · · · · · · · · · ·				
C Z None 🔻	16								
	17								
C n-bar None 👻	18								
C Vt (cm3)	19								
C Vtot / Donnan volume (cm3)	20								
C Dominating Species	21								
C Conc. Surface Phase (g/dm3)	22								
	23								
C Surface Pot. (mV) None	24				-				
C Surf. Cha. (mol/dm3) None 💌	25 26								
C Lonic Strength (mM)	26								
🔿 log <u>B</u> / lambda	27								
C Empty	20								-
, cmbt									
	<							>	

7. Repeat steps 2 - 6 with H⁺ and PO₄³⁻ as components, *i.e.* Example 1b), and note that the results, of course, becomes exactly the same.

5.2 Create a pH-diagram for the heterogeneous water-carbon dioxide system

Task: Construct a pH diagram, plot the logarithmic concentrations of all species as function of pH (0 < pH < 10), for the heterogeneous water - carbon dioxide system. Set the partial carbon dioxide pressure to 1 atm.

1. The following four equilibrium reactions describe the water - carbon dioxide system.

		$\log \beta^*$
1	$H_2O \rightleftharpoons H^+ + OH^-$	-14.00
2	$CO_2(g) + H_2O \rightleftharpoons H_2CO_3(aq)$	-1.47
3	$H_2CO_3(aq) \rightleftharpoons HCO_3^- + H^+$	-6.35
4	$\text{HCO}_3^- \rightleftharpoons \text{CO}_3^{2-} + \text{H}^+$	-10.33

*Equilibrium constants valid at infinite dilution and 25°C.

- 2. Define chemical components that can describe all species present (H⁺, OH⁻, CO₂(g), $H_2CO_3(aq)$, HCO_3^- , $CO_3^{2^-}$). Components: H⁺ and CO₂(g)
- 3. Write a chemical matrix using the components and the equilibrium reactions.

	log β	H^+	$CO_2(g)$	Equilibria Nos.
H^+	0	1	0	
$CO_2(g)$	0	0	1	
OH	-14.00	-1	0	1
$H_2CO_3(aq)$	-1.47	0	1	2
HCO ₃ ⁻	-7.82	-1	1	2 + 3
CO_{3}^{2-}	-18.15	-2	1	2 + 3 + 4

4. Enter the matrix. Blanks in the matrix will be interpreted as zeros by the program. By clicking the right mouse button in the first column it is possible to insert, clear and delete rows in the matrix. Change the phase properties for $CO_2(g)$ to Gas.

Chemi	cal <u>M</u> atrix		n for Each ponent	ľ		data: E mpone		Input data: S	Sulfaces	Ionic Media, Donnan Temperature
	Data File: E	xample 7			'pqr'	Matrix		Î		
	Species		log B	C*	H+	C02	Phase	Usage		
1	H+		0	С	1	0	Soluble	Use		
2	CO2 (g)		0	С	0	1	Gas	Use		
3	OH-		-14		-1		Sciences	ect property		
4	H2C03		-1.47		0	T	Soluble	Use		
5	нсоз -		-7.82		-1	1	Soluble	Use		
6	CO3 2-		-18.15		-2	1	Soluble	Use		
7							Soluble	Use		
8						1	Soluble	Use		
9							Soluble	Use		
10							Soluble	Use		
11							Soluble	Use		
12							Soluble	Use		
13							Soluble	Use	•	
	About	Ē		<u>S</u> treni an Mo it a D	odels i ifferer	or Surf it Temp	nce Comple erature (<u>2</u> 5	i C is default)		

5. Move to next tab "Variation for each component". At this tab we choose which kind of calculation we should do. For this example we would like to step pH (Component 1 H⁺, option 10) and to keep the carbon dioxide activity (logarithmic) constant (Component 2 $CO_2(g)$, option 9).

Input for Solgaswater Calculation	
Chemical Matrix Variation for Each Input data: Each Input data: Each Input data	:: Surfaces Tonic Media, Donnan an Iemperature
Chose Alternative for Each Component:	
Component 1 H+	For component: No diagram
Component 2 CO2(g)	🗖 Incl. all <u>s</u> olids
1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 10 0 11 0	Correct for form <u>u</u> la units
	Plot with X-axis Y-axis negative □ ±/- □ +/: sign on:
	EMF (mV) instead of pe on:
Option 1: Tc varies inregularly between each point Option 2: Tc is constant Option 3: Tc varies with constant steps Option 4: Tc varies through varied volume-additions Option 5: Tc varies through constant volume-additions Option 7: log Tc varies with constant steps Option 7: log Tc varies with constant steps Option 7: log a varies inregularly Option 8: log a varies inregularly Option 9: log a varies instant steps Option 10: log a varies with constant steps Option 11: log a varies with constant steps Option 11: log a varies with constant steps	

6. Move to next tab "Input data: Each component". Enter Start value "log $\{a\}$ ", Step length "Step" for the first component (H⁺), the logarithmic carbon dioxide activity and the number of points. Since the activity of a gas species is equal to its partial pressure, the logarithmic activity will be 0.

Chemical <u>M</u> at	rix		iation for Each Compo <u>n</u> ent	Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan ar Temperature
Ĭ	Ť.	H+	C02(g)			
Tc (r	nM)	0				
log T c	(M)					
	{a}	0	0			
To Byr. (r						
	tep	-10	· · · · · · · · · · · · · · · · · · ·			
Final va	alue	-10				
	1		A			
	2					
	3					
w w	4					
Irregular variation	5					
(and (or)	7					
	8					
	9					
	10		-			
Initial volui St No. of poir		2	ml Volume varies ml irregular No. of grou Predomina	ıpsin. nce diagram		
						C <u>a</u> lculate

7. Start the calculation by pressing the "Calculate" button or use the Calculate menu.

8. Viewing the result.

Choose H^{+} in the Component/Species box and then "-log {[x]/M}" to view pH in column 1. Display the logarithmic concentration of all soluble species present in the following columns.

efine Column Contents	Calculation Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	X
Column No: Component/Species:	Spec/Comp:	H+	H+	OH-	HC03 -	C03 2-	H2C03	COlumn 7	-
6 + H2C03 •	Content:	- log ([x]/M)		ï					
· · · · · · · · ·	1	0.000	0.000	-14.000	-7.820	-18.150	-1.470		1
(x) (mM) Conc.	2	10.000	-10.000	-4.000	2.180	1.850	-1.470		
log ([x]/M]	3								
: log ([x]/M]	4								
{a} Activity	6								
log {a}	7								
If (mM) Total Conc. in Fluid	8								
	9								
log(IIfI/M)	10						ļ		
Ts (mM) Total Conc. in Solution	11								
Te (mmo]/dm3) Tetal Conc.	12								
logilTel/M)	14						i i		
Fi (ag) / C Fi (s) None	15								
Z None 💌	16								
niber Vone 🔻	17	-							
Vt (cm3)	18								
Vtot / Donnan volume (cm3)	20						1		
	21								
Dominating Species	22								
Conc. Surface Phase (g/dm2)	23						l		
Surface Edt. (mV) None 💌	24								
Sun Cha (mol/dm3) None 💌	25								
Lonic Strength (mM)	20								
log <u>₿</u> / lambda	28								
Empty	29								

9. Plotting the results

Choose "Plot calculation data" from the "Diagrams" menu.

The default setting is that the first column in the Calculation Result grid contains X-values and all remaining columns will be plotted on the Y-axis. It is possible to remove a series from the Plot Columns list by clicking on the series. As an option you can choose to exclude all curves that never exceed a given value.

Continue by pressing "Plot diagram".

10. The diagram

You can modify your chart using the top buttons, e.g. change the scale, labels, lines and symbols, or print your diagram. For example rescale Y-axis (min –8, max 0, origin 0).

Print/Save Chart	<u>I</u> itle / Axes	Legends
<u>S</u> caling	Symbols	Lines
(-Axis	Y-Axis	
Min: 0	- Min:	-8
Max 10	Max	0
Origin: 0	— Origin:	0
fajor Unit: 1	Major Unit:	2
finor Unit 0.5	Minor Unit	1
🗖 Reverse	ed 🔽 Revers	ed 🔲 L <u>o</u> garitmic
Can	cel Apply	ОК

5.3 Surface complexation models (H⁺-goethite)

Task: Compare experimental data points with a model calculation by plotting a diagram showing the protonation of a goethite surface as a function of pH.

1. The following equilibrium reactions and electrostatic information describe the actual chemical system.

		$\log \beta^*$
1	$H_2O \rightleftharpoons H^+ + OH^-$	-13.775
2	$\equiv \text{FeOH} + \text{H}^{+} \rightleftharpoons \equiv \text{FeOH}_{2}^{+}$	7.47
3	$\equiv \text{FeOH} \rightleftharpoons \equiv \text{FeO}^- + \text{H}^+$	-9.51

Additional information about the goethite system:				
Surface site concentration	1.2 mmol/dm^3			
Solid phase concentration	11 g/dm^3			
Specific surface area	39.9 m²/g			
Specific capacitance	$1.28 \text{ C/V} \cdot \text{m}^2 *$			

*Constants valid at 25°C and 100mM (NaNO₃).

2. Two components: H^+ and \equiv FeOH

3. The chemical matrix and the surface charges.

	log β	H^{+}	≡FeOH	Q_0	Q ₁	Q ₂
H^+	0	1	0			
≡FeOH	0	0	1	0	0	0
OH	-13.775	-1	0			
$\equiv FeOH_2^+$	7.47	1	1	1	0	0
≡FeO ⁻	-9.51	-1	1	-1	0	0

WinSGW can simultaneously model inner-sphere complexes in the 0-plane (the plane of the surface sites), outer-sphere complexes in the 1-plane, electrolyte ion pairs in the 2-plane, and the diffuse layer of electrolyte ions.
4. Start WinSGW and enter the matrix. By changing the Phase properties of \equiv FeOH from "Soluble" to "Surf.Comp." the surface charge columns become visible. It is only possible to enter surface charge for species with "Surf.Comp." or "Surface" as the Phase property. The default model in WinSGW is CCM and, to open the columns for Q₁ and Q₂, the relevant surface charge model is chosen on the tab "Input data: Surfaces".

emical <u>M</u> atrix		on for Each npo <u>n</u> ent			Input data: Each component [nput					es ^{Ionic}	Ionic Media, Donnan Temperature		
Data File:	:			'pqr'	Matrix	Surface 1		e1		~			
Species		log B	C*			QO	Q1	Q2	Phase	Usage			
1 H+		0	С	1	0				Soluble	Use			
2 =FeOH		0	С	0	1	0			Surf.Comp.	Use			
3 OH-		-13.775		-1	0				Soluble	Use			
4 =FeOH2 +		7.47		1	1	1			Surface	Use			
5 =Fe0 ·		-9.51		-1	1	-1			Surface	Use			
6									Soluble	Use			
7									Soluble	Use			
8									Soluble	Use			
9									Soluble	Use			
0									Soluble	Use			
11									Soluble	Use			
2									Soluble	Use			
13						< 1		>	Soluble	Use	~		
	×C	= Compone	nts	r		,							
	Г	Use Ionic <u>S</u>	treng	gth Ca	Iculati	ons							
	Г	Use Donna	n Mo	dels f	or Surl	ace C	omple	exatio	n				
		Calculate a	aD	ifferen	t Tem	peratu	ire (25	5 C is	defaultì				

5. Under "About..." it is possible to enter information about the chemical system e.g. temperature, ionic strength and references.

nformation ab	out Chemical !	Matrix	
T = 25C I = 100mM NaN			
	, Sjöberg S. and ia et Cosmochimi		
	Cancel		OK

6. Move to next tab "Variation for each component".

Choose to make constant steps in pH and to keep the total concentration of goethite constant. (Component 1 H⁺, option 10; Component 2 =FeOH, option 2; Surface 1 =FeOH, option 20).

Ē	Input for Solgasw	ater Calculation					
	Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each com <u>p</u> onent	Input data	: Surfaces		a, Donnan and perature
	Chose Alternative for I	Each Component:					
	Component 1 H+	40 50 60 70	80 90 100 1	1 C		nent: No o	
	Component 2 =FeOH				🔲 Incl. al		
	102030	40 50 60 70	80 90 100 1	10	Correc	t for form <u>u</u> la	aunits
					Plot with negative sign on: EMF (mV)	X-axis ∏ ±/-	□ +/:
	Surface 1 =FeOH	2 0 23 0			instead of pe on:	Г	
	Option 11: log a is For surface compone Option 20: Conc. or Option 21: Conc. or Option 22: Conc. or volume-		redominance diagram ns are available d <u>constant steps</u> ough titration with <u>cons</u>	stant			

7. On the "Input data: Each component" tab, enter the start value of "log $\{a\}$ ", the step length "Step" for the first component H⁺, the total concentration of goethite "Tc" and the number of points.

🗗 Ing	put for Solgasw	ater Calculati	n			
	Chemical <u>M</u> atrix	Variation for E Compo <u>n</u> er		Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan and Iemperature
	Tc (mM) log (Tc I(M) log (a) Tc Byr, (mM) Step Final value 1 2 3 4 1 rregular 5 variation 6 7 7 8 9 9 < € 0001	H+ =FeOH 1.2 -2 -2 -2 -0.1 -10 -10 -2 -775 ml Vol 775 ml Vol -775 No.	Imerica State Stat			
						C <u>a</u> lculate

8. Move to next tab "Input data: Surfaces". WinSGW can apply different electrostatic models to describe the double layer at the surface. Depending on the model, different charge columns (Q0, Q1 and Q2) will be activated on the Chemical Matrix tab and the program will prompt for one or two capacitance values. To activate the ionic strength dependent electrostatic models, the ionic strength check box on tab "Chemical Matrix" must be marked. In this example the Constant Capacitance Model is to be used. Enter values for solid phase concentration, capacitance 1 and the specific surface area. N.B. In the yellow text box references describing the different models are listed.

🗟 Inpu	it for Solgasw	ater Ca	alculation			
Ch	emical <u>M</u> atrix		ation for Each Compo <u>n</u> ent	Input data: Each component	<u>I</u> nput data: Surfa	aces Ionic Media, Donnan and
Ch	Solid co	nc. (g/l) tep (g/l) 3vr. (q/l) 1 2 ies 4 5 6 7 1 (F/m2) 2 (F/m2) (m2/g)	Compogent Fe0H 11 1 1		Input data: Surfa	
	-	To enab		M and TPM, check the i	onic strength box.	
				erent surface models	<u></u>	
			W. and Gamsjag 250, 759 (1972).	ger, H., Kolloid Z. u. Z.	×	C <u>a</u> lculate

9. Start the calculation.

10. Viewing the result

View pH in the first column and Z in the second column (Choose H^+ in the Component/Species box, "Z" and \equiv FeOH in the box next to "Z"). Z is calculated as the average number of protons taken up by \equiv FeOH.

Display Calculation Results									
	Calculation	Results:							
Define Column Contents	Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	~
Column No: Component/Species:	Spec/Comp:	H+	H+	<i></i>					
2 · H+ ·	Content:	log ([x]/M)	Z (=FeOH)						
	1	2.000	0.991						
(m) [x] (mM) Conc.	2	2.100	0.988						
C log ([x]/M)	3	2.200	0.986						
	4	2.300	0.982						
C : log ([x]/M)	5	2.400	0.979						
C (a) (M) Activity	6	2.500	0.974						
🔘 log (a) ((a)/M)	7	2.600	0.969						
C Tf (mM) Total Conc. in Fluid	8	2.700	0.963						
	9	2.800	0.956						
<pre>○ log(I<u>I</u>f[/M])</pre>	10	2.900	0.948						
C Ts (mM) Total Conc. in Solution	11	3.000	0.940						
C Tc (mmol/dm3) Total Conc.	12	3.100	0.931						
C log[[Tc]/M]	13	3.200	0.920						
C Fi (ag) / C Fi (s) None	14	3.300	0.909						
	15	3.400	0.898						
● Z =FeOH ▼	16	3.500	0.885						
C n-bag None	17	3.600	0.872						
,	18	3.700	0.858						
C Vt (cm3)	19	3.800	0.843						
C Vtot / Donnan volume (cm3)	20	3.900	0.828						
C Dominating Species	21	4.000	0.813						
C Conc. Surface Phase (g/dm3)	22	4.100	0.797						
	23	4.200	0.780						
C Surface Bot. (mV) None 💌	24	4.300	0.763						
C Surf. Cha. (mol/dm3) None 🖃	25	4.400	0.746						
C Ionic Strength (mM)	26	4.500	0.728						
C log B / lambda	27	4.600	0.711						
	28	4.700	0.693						
C Empty	29	4.800	0.674						-
			0.050					>	

11. Plotting the results Plot Z as a function of pH.

12. Insert experimental data points in the chart

Choose Insert Data at the top of the chart and enter your experimental values or paste them using the Windows Clipboard.

5.4 Create a predominance area diagram (H⁺-Fe²⁺-e⁻)

Task: Plot a diagram showing the predominating iron species as a function of pH and pe for the H^+ -Fe²⁺-e⁻ system. This type of plot is commonly referred to as a predominance area diagram.

NB. pe is the negative logarithm of the formal electron activity and can be correlated to the NHE (normal hydrogen electrode) electrode potential (E_H , mV) with the following equations:

 $pe = E_H / g$ $g = RT \ln(10) / F$

(R: molar gas constant, T: absolute temperature in Kelvin, F: Faradays constant) With E_H plotted on the Y-axis, the diagram is usually referred to as a Pourbaix diagram.

		$\log \beta^*$
1	$H_2O \rightleftharpoons H^+ + OH^-$	-14.00
2	$\mathrm{Fe}^{2+} + \mathrm{OH}^{-} \rightleftharpoons \mathrm{FeOH}^{+}$	4.5
3	$\mathrm{Fe}^{2+} + 2\mathrm{OH}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_2(\mathrm{aq})$	7.4
4	$\operatorname{Fe}^{2+} + \operatorname{3OH}^{-} \rightleftharpoons \operatorname{Fe}(\operatorname{OH})_{3}^{-}$	11.0
5	$\operatorname{Fe}^{2+} + 2\operatorname{OH}^{-} \rightleftharpoons \operatorname{Fe}(\operatorname{OH})_2(s)$	15.1
6	$\operatorname{Fe}^{3+} + \operatorname{OH}^{-} \rightleftharpoons \operatorname{Fe}(\operatorname{OH})^{2+}$	11.8
7	$\mathrm{Fe}^{3+} + 2\mathrm{OH}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{2}^{+}$	22.3
8	$\mathrm{Fe}^{3+} + 4\mathrm{OH}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{4}^{-}$	34.4
9	$2\mathrm{Fe}^{3+} + 2\mathrm{OH}^{-} \rightleftharpoons \mathrm{Fe}_2(\mathrm{OH})_2^{4+}$	25.0
10	$\mathrm{Fe}^{3+} + 3\mathrm{OH}^{-} \rightleftharpoons \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{am})$	38.8
11	$Fe^{3+} + e^- \rightleftharpoons Fe^{2+}$	13.0
12	$Fe^{2+} + 2e^{-} \rightleftharpoons Fe(s)$	-13.8
*0	unstants uselid at 25°C and at infinite dilution	•

1. The following equilibrium reactions describe the actual chemical system.

*Constants valid at 25°C and at infinite dilution.

2. Three components: H^+ , Fe^{2+} and e^- .

3. The chemical matrix.

	log β	H^{+}	Fe ²⁺	e	Equilibria Nos.
H^{+}	0	1	0	0	
Fe ²⁺	0	0	1	0	
e	0	0	0	1	
OH	-14.0	-1	0	0	1
FeOH ⁺	-9.5	-1	1	0	1 + 2
Fe(OH) ₂ (aq)	-20.6	-2	1	0	$2 \cdot 1 + 3$
Fe(OH) ₃	-31.0	-3	1	0	$3 \cdot 1 + 4$
Fe ³⁺	-13.0	0	1	-1	-11
FeOH ²⁺	-15.2	-1	1	-1	1 + 6 - 11
Fe(OH) ₂ ⁺	-18.7	-2	1	-1	2 · 1 + 7 - 11
Fe(OH) ₄	-34.6	-4	1	-1	4 · 1 + 8 - 11
$Fe_2(OH)_2^{4+}$	-29.0	-2	2	-2	$2 \cdot 1 + 9 - 2 \cdot 11$
Fe(OH) ₂ (s)	-12.9	-2	1	0	$2 \cdot 1 + 5$
Fe(OH) ₃ (am)	-16.2	-3	1	-1	$3 \cdot 1 + 10 - 11$
Fe(s)	-13.8	0	1	2	12

4. Start WinSGW and enter the matrix. Remember to change "Usage" to Not Use for the component $e^{-}(cf. p. 12)$ and "Phase" to Solid for the three solids.

hemi	ical <u>M</u> atrix	Variation Comp			Input co	data: mpon		Input	data: Surfac	es	Ionic Media, Donnan <u>T</u> emperature
	Data File: Exer	npel3			'p	qr' Ma	trix			^	
	Species		log B	C*	H+	Fe	e-	Phase	Usage		
1	H+		0	С	1	0	0	Soluble	Use		
2	Fe 2+		0	С	0	1	0	Soluble	Use		
3	e-		0	С	0	0	1	Soluble	Not Use		
4	он-		-14		-1	0	0	Soluble	Use		
5	FeOH+		-9.5		-1	1	0	Soluble	Use		
6	Fe(OH)2 (aq)		-20.6		-2	1	0	Soluble	Use		
7	Fe(OH)3 -		-31		-3	1	0	Soluble	Use		
8	Fe 3+		-13		0	1	-1	Soluble	Use		
9	FeOH 2+		-15.2		-1	1	-1	Soluble	Use		
10	Fe(OH)2 +		-18.7		-2	1	-1	Soluble	Use		
11	Fe(OH)4 -		-34.6		-4	1	-1	Soluble	Use		
12	Fe2(0H)2 4+		-29		-2	2	-2	Soluble	Use		
13	Fe(OH)2 (s)		-12.9		-2	1	0	Solid	Use	~	
p		Γ	= Compone Use Ionic <u>S</u> Use Donna	treng				iomplexation			
	A <u>b</u> out			aD	ifferen	t Tem	peratu	re (<u>2</u> 5 C is de	efault)		

5. Move to next tab "Variation for each component".

Choose to step pH, to keep the total concentration of iron constant and to step pe (as dependent variable).

(Component 1 H⁺, option 10; Component 2 Fe²⁺, option 2; Component 3 e⁻, option 11).

6. Choose the component (Fe²⁺) for which the predominance area diagram should be constructed. Check the sign boxes to plot pH and pe instead of $\log[H^+]$ and $\log\{e^-\}$ on the axis.

💐 Input for Solg	aswater Calculation					
Chemical <u>M</u> atri:	× Variation for Each Compo <u>n</u> ent	Input data: Each component	Input data: S	urfaces		a, Donnan and perature
Chose Alternativ	e for Each Component:					
Component 1 H	+ 0 4 0 5 0 6 0 7 0	80 90 10 0 1	10	or compor		
Component 2 F	e2+ C 4 C 5 C 6 C 7 C	80 90 100 1	1.0	incl. sol	<u>s</u> olids	
Component 3 e			I	Correct Plot with	X-axis	Y-axis
10203	0 40 50 60 70	80 90 100 1		negative sign on: EMF (mV)	⊻ ±/·	
				nstead of be on:		
	tions above, corresponds to	the following	~			
parameters for Tc: TotalConce	the components entration for the actual com	ponent	=			
a: Activity for th	ne free amount of the actual	component				
	varies <u>irregularly</u> between e is constant	ach point				
Option 3: Te	varies with <u>constant steps</u>					
	varies through <u>varied volur</u> varies through <u>constant vo</u>					
	Tc varies with constant ste		~			

7. On the "Input data: Each component" tab, enter start value "log {a}", step length "Step" for the first and third components (H^+ and e), the total concentration of Fe²⁺ "Tc" and the number of points and groups. In this example 899 (29 times 31) equilibrium points will calculated, which might take some time depending on the actual computer performance. In WinSGW there is a limit for the maximum calculation time (default 30 seconds) that can be changed. This can be done at "Preferences" (Option tab) on the "File" menu.

ut for Solg		~				v	_
hemical <u>M</u> at	rix		iation for Ea Compo <u>n</u> ent	ch	Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnar <u>T</u> emperature
		H+	Fe 2+	e-	7		
Tc (r	nM)		10				
log T cl							
log	{a}	0		-15			
Tic Byr. (r	nM)						
	Step -0.5		1				
Final va	alue	-14	-	15			
	1				_		
	2		2				
	3						
	4	3					
Irregular variation	6						
	7				-		
	8						
	9						
	10				-		
lubiel celo			 ml Volur				
Initial volu	ne j		vari				
St	ер Г		ml irregu				
No. of poi	nts [29	- No. of Predo	groups ir minance	n diagram 31		
							C <u>a</u> lculate

- 8. Start the calculation.
- 9. Viewing the results.

Choose "Predominance diagram" from the "Diagrams" menu.

😂 User Chart															
Print / Save Iitle /	Text <u>L</u> ege	nds <u>S</u> caling	Symbols	Lines	I <u>n</u> sert Data										
		Exempel3	9 10 11 1	2 13 14		Fe 2+ Fe0H+ Fe(0H)3 - Fe 3+ Fe0H 2+ Fe(0H)2 + Fe(0H)4 -									

10. To include solids in the diagram return to the input (activate "Chemical Matrix" on the "View" menu) and, on the "Variation for each component" tab, mark "Incl. solids of component". This implies that if a solid forms it will be plotted. It is also possible to include all solids (*i.e.* also solids not containing the specified component, Fe^{2+}) and to correct for formula units (poly-nuclear complexes).

11. Start the calculation (Short-cut key, <F9>) and plot the new predominance area diagram.

🖨 User Char	t						
Print / Save	<u>⊺</u> itle / Text	<u>L</u> egends	<u>S</u> caling	Symbols	Lines	I <u>n</u> sert Data	
20		E>	rempel3		·····································	•	Fe 2+ Fe 3+ Fe(0H)2 (s) Fe(0H)3 (am) Fe (s)

5.5 Ionic strength dependent constants

Task 1: Calculate $\log\{H^+\}$ of 1, 5 and 10mM HCl and NaOH solutions in 500mM (NaCl) at 50°C using the Güntelberg, Davies, and Pitzer equations to calculate the activity coefficients at the actual ionic strength. The (NaCl) notation is used to imply that the solution, in addition to the HCl or NaOH added, also contain dissolved sodium chloride salt of the given concentration.

1. One equilibrium reaction describes the actual chemical system.

		log β
1	$H_2O \rightleftharpoons H^+ + OH^-$	-13.24

This constant is valid at 50°C and at infinite dilution. For WinSGW calculations involving activity coefficients, the log β constants must be given at infinite dilution. At 50°C the dielectric constant for water is 69.90 (ϵ is needed to calculate the activity coefficients, *cf.* paragraph 2.5).

2. One component: H⁺

3. The chemical matrix and the charge of the component (z)

	log β	H^+	Z
H^+	0	1	1
OH	-13.24	-1	

4. Start WinSGW and enter the matrix. Mark the "Use ionic strength calculations" box which activates the charge column (z) and the "Calculate at a different temperature" box. Only the charge of the components needs to be given.

	for Solgasw ical <u>M</u> atrix	Variation	for Each	ſ—		data: Each	Input o	lata: Surface	Ionic Media, Donnar	n an
Chichin		Comp	Component		component		Tubace	iata. Sanace	Temperature	
	Data File:				r' Ma	Ion Str.			^	
	Species		log B	C×	H+	z	Phase	Usage		
1	H+		0	c	1	1	Soluble	Use	-	
2	он.		-13.24	-	-1	-1	Soluble	Use		
3				-			Soluble	Use	-	
4				-			Soluble	Use	-	
5							Soluble	Use		
6							Soluble	Use		
7							Soluble	Use		
8							Soluble	Use		
9							Soluble	Use		
10							Soluble	Use		
11							Soluble	Use		
12							Soluble	Use		
13							Soluble	Use	~	
		×C	= Compone	nts		r				
		V	Use Ionic <u>S</u>	treng	gth Cal	culations				
		Г	<u>U</u> se Donna	n Mo	odels fo	or Surface Co	omplexation			
			Calculate a	t a D	ifferen	t Temperatur	e (<u>2</u> 5 C is de	fault)		
	A <u>b</u> out		Use Tempe	r <u>a</u> tur	e Dep	endent Cons	tants			

5. On the "Variation for each component" tab choose to vary the total concentration of H^+ irregularly (Component 1 H^+ , option 1).

6. On the "Input data: Each component" tab enter the total concentrations of H⁺.

Input for Solgasw	vater Calculation			
Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan and Iemperature
Tc (mM) log ITcl (M) log ITcl (M) Step Final value 1 2 3 4 9 10 1 2 3 4 7 8 9 10	H+	as in ce diagram		
				C <u>a</u> lculate

7. Move to the "Ionic Media, Donnan and Temperature" tab and enter the temperature (in degrees Celsius), the dielectric constant of water (ϵ), and information with respect to the background electrolyte concentration.

Here, three different situations can be distinguished. Thus, the solutions can be prepared to contain a given salt concentration in addition to the system of interest, or they can be made to contain either a constant cation, or anion, concentration of the ionic medium. The notations for these three options are (XZ), X(Y), and(X)Y, respectively (*e.g.* 0.1 M (Na₂SO₄), 0.5 M K(Cl), 3 M (Na)ClO₄).

In the first case, the charge and concentration of both ions are entered, and WinSGW solves for the charge balance by "adding" an extra amount of cations or anions with the charge given. This is made also in the second (and third) case, but here the input concentration of the anion (cation) is given as zero.

2ptimisation: Input data			~	~
Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each component	Input data: Surfaces	Ionic Media, Donna and <u>T</u> emperature
	nc. (mM) Mark th 500 H+ in bu 500 Chargee surface of 0.2 Model fm 0.2	parameters = species that represent: ilk phase 1Donnan species based on Donnan on described by en ef al. Puip Paper Res. J.	Target Temperature Temperature: 5 Epsilon: 69	0 Degrees Celsius
$\log f = -Az^{2} \frac{\sqrt{1}}{1 + \sqrt{2}}$ z is the charge of a s $A = 1.82 \cdot 10^{6} \cdot (eT)$ T: Absolute Temper e: Dielectric consta	pecies and is given b −¾ ature	y the user.	~	

8. Calculate

9. Results

View $\log\{H^+\}$, the ionic strength and $\log \beta$ for the formation of OH⁻ in columns. (Col. 1: H⁺, $\log\{a\}$; Col. 2: None, Ionic strength; Col. 3: OH⁻, $\log \beta$ /lambda)

Define Column Contents	Calculation Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	-
Column No: Component/Species:	Spec/Comp:	Lolumn I H+	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	- 1
3 OH -	Content:	log ({a}/M)	Ionic Str (mM)	log B					-8
	1	-2.223	510.00	-12,793					
C [x] (mM) Conc.	2	-2.524	505.00	-12.795					
C log ([x]/M)	3	-3.222	501.00	-12.796					
C + log ([x]/M)	4	-10.018	501.00	-12.796					
	5	-10.716	505.00	-12.795					
(a) (M) Activity	6	-11.017	510.00	-12.793					
🗇 log {a} ({a}/M)	- / 8								
If (mM) Total Conc. in Fluid	9		-						
🔿 log(<u>I</u> f /M)	10								
Ts (mM) Total Conc. in Solution	11								
🗂 Tic (mmoj/dm3) Total Conc.	12								
🔿 [og(Tc /M])	13								
CFi(ag) / CFi(s) None	14								
	15								
C Z None ▼	16								
🔿 n-bar None 💌	18								
℃ Vt (cm3)	19								
Vtot / Donnan volume (cm3)	20								
 Dominating Species 	21								
Conc. Surface Phase (g/dm3)	22								
	23								
[™] Surface <u>P</u> ot. (mV) None ▼	24								
🖱 Surf. Cha. (mol/dm <u>3</u>) None 🖃	25		-					-	
🔿 Lonic Strength (mM)	26								
log <u>B</u> / lambda	27		-		· · · · · · · · · · · · · · · · · · ·				

10. Change "Ionic strength model" to Davies (To activate the input again, choose Chemical matrix in the View menu) and recalculate.

a Input for Solgaswater Calculation	Display Calculation Results							
Chemical Mather Reput data Opennations Model Chemical Mather Comparent Component Input data Surfaces Inner Media, Donnan and Temperature	Define Column Contents Column No: Component/Species:	Calculation Rest Column Col Spec/Comp	ults: lumn 1 Column 2 H+ ((a)M) Ionic Str (mM)	Column 3 OH- log B	Column 4	Column 5	Column 6	Column 7
Sect ground electrolyte Dorring parameters Sect ground electrolyte Dorring parameters Outgo Corc (mM) Made its processes that imposence Here to back shote Diaged Dorran C Back Deperfulcade Diaged Dorran C Back Deperfulcade Diaged Dorran C Back Deperfulcade Topes Temperature Diaged Dorran Imposence Index to posence Imposence Diaged Dorran Imposence Index to posence Imposence	(1	0,000 (0.00	ing # 12.903 12.903 12.903 12.903 12.903 12.903 12.903 12.903				
	C Empty	23						>

11. Change "Ionic strength model" to Pitzer and make a new calculation.

	Display Calculation Results							
	Display Calculation Results Define Column Contents Column No: Component/Species Table Table Charl (MM) Charl	Column Column Spec/Conje Content 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 177 18 19 20	Column 2 Ionic Str (mM) 510.00 505.00 501.00 501.00 510.00 510.00	0H-	Column 4	Column 5	Column 6	
HARVIE, C.E. and WEARE, J.H., "The prediction of mineral solubilities in natural waters: The N=K-KMgCACLSOc-H2O system from zero to high concentration at 12%; Geochrimica et Cosmochrimica Acta 44981-997 (1980).	Consisting Species Consisting Species Cons. Surface Prises (p/dm3) Surface Pot. (m/) None Constance Pot. (m/) Surface Pot. (m/) Constance Pot	21 22 23 24 25 26 27 28 28 29 29						

Task 2: Calculate, as a function of $\log{H^+}$, the hydrolysis of aluminium(III) at 25 °C in a river water and in sea-water.

1. The following equilibrium reactions define the chemical system at infinite dilution:

		log β
1.	$H^+ + OH^- \rightleftharpoons H_2O$	14.00
2.	$Al^{3+} + OH^{-} \rightleftharpoons AlOH^{2+}$	9.0
3.	$Al^{3+} + 2 OH^{-} \rightleftharpoons Al(OH)_{2}^{+}$	18.7
4.	$Al^{3+} + 3 OH \rightleftharpoons Al(OH)_3(aq)$	27.0
5.	$Al^{3+} + 4 OH \rightleftharpoons Al(OH)_4^{-}$	33.0
6.	$3 \text{ Al}^{3+} + 4 \text{ OH}^{-} \rightleftharpoons \text{Al}_3(\text{OH})_4^{5+}$	42.1
7.	$Al^{3+} + 3 OH \rightleftharpoons Al(OH)_3(s)$	33.5

2. Two components, H^+ and Al^{3+} .

	log β	H^+	Al ³⁺	Z	Equilibria
					nos.
H^{+}	0	1	0	1	
Al ³⁺	0	0	1	3	
OH	-14.00	-1	0		-1
AlOH ²⁺	-5.0	-1	1		2 - 1
$Al(OH)_2^+$	-9.3	-2	1		3 – 2 x 1
Al(OH) ₃ (aq)	-15.0	-3	1		4 – 3 x 1
Al(OH) ₄	-23.0	-4	1		5 – 4 x 1
$Al_3(OH)_4^{5+}$	-13.9	-4	3		6 – 4 x 1
Al(OH) ₃ (s)	-8.5	-3	1		7 – 3 x 1

3. The chemical matrix and the charge of the components.

4. Start WinSGW, chose "New Chemical Matrix" from the "File" menu, and activate the "Use ionic strength calculations" box. Enter the matrix with the charges of the components and remember to change "Phase" to Solid for $Al(OH)_3(s)$. The correct charges of all species will be calculated on entering the next tab. Don't worry!

emi	cal <u>M</u> atrix	Variation Comp		ľ		data: l m <u>p</u> one		[nput data: !	Surfaces	lonic Media Iemp	, Donn berature
	Data File:				'pqr'	Matrix	Ion Str.			~	
	Species		log B	C*			z	Phase	Usage		
1	H+		0	С	1	0	1	Soluble	Use		
2	AI 3+		0	С	0	1	3	Soluble	Use		
3	OH ·		-14		-1	0	-1	Soluble	Use		
4	AIOH 2+		-5		-1	1	2	Soluble	Use		
5	AI(OH)2 +		-9.3		-2	1	1	Soluble	Use		
6	Al(OH)3 (aq)		-15		-3	1	0	Soluble	Use		
7	AI(OH)4 ·		-23		-4	1	-1	Soluble	Use		
8	Al3(OH)4 5+		-13.9		-4	3	5	Soluble	Use		
9	Al(OH)3 (s)		-8.5		-3	1	0	Solid	Use		
10								Soluble	Use		
11								Soluble	Use		
12								Soluble	Use		
13								Soluble	Use	~	
			= Compone								
			Use Ionic <u>S</u>		-						
			Use Donna								
	About		Calculate a	it a D	ifferen	it Tem	perature (2	5 C is default)			

5. On the "Variation for each component" tab, chose to step $\log\{H^+\}$ with constant steps at a constant total concentration of Al(III). (Component 1 H⁺, option 10; Component 2 Al³⁺, option 2)

Input for Solgaswa	ater Calculation					
Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each component	Input data: !	Surfaces 1		, Donnan and perature
Chose Alternative for E	ach Component:					
Component 2 Al 3+-		80 90 jige 1 80 90 joo 1		☐ Inc]. so ☐ Incl. all	for formula X-axis	units Y-axis
parameters for the c Tc: Total Concentral a: Activity for the fre Option 1: Tc varie: Option 2: Tc is con Option 3: Tc varie: Option 4: Tc varie: Option 5: Tc varie:	tion for the actual comp e amount of the actual s <u>irregularly</u> between ea	component component ach point te-additions ume-additions				

6. On next tab, "Input data: Each component", enter the start and step values for $\log\{H^+\}$, the total concentration of Al^{3+} , and the number of points to be calculated. To simulate a system which is always saturated with respect to $Al(OH)_3(s)$, Tc for Al^{3+} is given as a high, fortuitous, value, *e.g.* 10 000 mM.

nput for Solg			~	v	
Chemical <u>M</u> atri	× Va	ariation for Each Compo <u>n</u> ent	Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan a Iemperature
	H+	AI 3+			
Tc (m		0.1			
log T cl (
log l					
To Byr. (m	m) ep -0.2				
Final val					
	1	~			
-	2				
	3				
Irregular	4				
variation -	5				
-	7				
	8				
-	9	~			
<		>			
Initial volum	ie	ml Volume varies			
Ste	-n	varies mi_irregular			
0.0	P				
		- No. of group			
No. of poin	ts 31	Predominan	ce diagram		
					Calculate
					Laiculate

7. Simulate, on the tab "Ionic Media, Donnan and Temperature", a river water by entering a +1/-1 background electrolyte of 2 mM, and chose the Davies ionic strength model with d = 0.3.

🗟 Input for Solgaswa	ater Calculation		
Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each com <u>p</u> onent	Input data: Surfaces Ionic Media, Donnan and <u>T</u> emperature
Background electroly Charge Co Cation II I Anion -1 I Ionic strength model None Debye-Hückel Ext. Debye-Hückel Güntelberg O Davies of O Pitzer	nc. (mM) 2 2 Chargec surface el <u>b</u> 0.2 Index	a parameters e species that represent: alk phase	Target Temperature and Epsilon Temperature: 25 Degrees Celsius Epsilon: 78.54
$\log f = -Az^2 \left(\frac{\sqrt{z}}{1+z} \right)$ z is the charge of a given by the user.	species and <i>d</i> a consta	nt all	C <u>a</u> lculate

8. Calculate

9. View log{H⁺}, log S_{Al}, and the fraction of different aqueous aluminium species in columns. (Col. 1: H⁺, log {a}; Col. 2: Al³⁺, log (|Tfl/M); Col. 3: Al³⁺, "F_i of selected component in all species in solution" in the Column-Contents menu)

Display Calculation Results									X
- Define Column Contents	Calculation	Results:							
	Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	~
Column No: Component/Species:	Spec/Comp:	H+	Al 3+	Al 3+	AI0H 2+	A(0H)2 +	A(0H)3 (aq)	A(0H)4 -	
8 🗧 Al3(0H)4 5+ 💌	Content:	log ({a}/M)	log (Tf) (M)	Fi (aq) (Al 3+)		Fi (aq) (Al 3+)	Fi (aq) (Al 3+)	Fi (aq) (Al 3+)	
	1	-4.000	-4.000	0.903	0.068	0.029	0.001	0.000	
🔘 [x] (<u>m</u> M) Conc.	2	-4.200	-4.000	0.831	0.100	0.067	0.002	0.000	
○ log ([x]/M)	3	-4.400	-4.346	0.708	0.137	0.147	0.007	0.000	
	4	-4.600	-4.829	0.532	0.165	0.282	0.021	0.000	
○ : log ([x]/M)	5	-4.800	-5.229	0.334	0.164	0.448	0.054	0.000	
(M) Activity	6	-5.000	-5.543	0.173	0.135	0.582	0.111	0.000	
🔿 log (a) ((a)/M)	7	-5.200	-5.784	0.075	0.093	0.639	0.192	0.000	
C Tf (mM) Total Conc. in Fluid	8	-5.400	-5.970	0.029	0.057	0.618	0.295	0.001	
C log([Tf]/M]	9	-5.600	-6.115	0.010	0.032	0.545	0.412	0.002	
	10	-5.800	-6.226	0.003	0.016	0.444	0.532	0.004	
C Ts (mM) Total Conc. in Solution	11	-6.000	-6.309	0.001	0.008	0.340	0.645	0.007	
C Tc (mmol/dm3) Total Conc.	12	-6.200	-6.368	0.000	0.004	0.245	0.738	0.012	
C [og(Tc /M)	13	-6.400	-6.407	0.000	0.002	0.169	0.808	0.021	
Fi(ag) / C Fi(s) Al 3+	14	-6.600	-6.430	0.000	0.001	0.113	0.851	0.036	
	15	-6.800	-6.439	0.000	0.000	0.073	0.870	0.058	
C Z None 💌	16	-7.000	-6.436	0.000	0.000	0.045	0.864	0.091	
C n-bar None	17	-7.200	-6.421	0.000	0.000	0.028	0.833	0.139	
	18	-7.400	-6.391	0.000	0.000	0.016	0.778	0.205	
C ∀t (cm <u>3</u>)	19	-7.600	-6.344	0.000	0.000	0.009	0.699	0.292	
C Vtot / Donnan volume (cm3)	20	-7.800	-6.277	0.000	0.000	0.005	0.598	0.397	
C Dominating Species	21	-8.000	-6.187	0.000	0.000	0.003	0.486	0.511	
C Conc. Surface Phase (g/dm3)	22	-8.200	-6.074	0.000	0.000	0.001	0.375	0.624	
	23	-8.400	-5.939	0.000	0.000	0.001	0.275	0.725	
C Surface <u>Pot.</u> (mV) None 💌	24	-8.600	-5.785	0.000	0.000	0.000	0.193	0.807	
C Surf. Cha. (mol/dm3) None 🚽	25	-8.800	-5.617	0.000	0.000	0.000	0.131	0.869	
C Ionic Strength (mM)	26	-9.000	-5.439	0.000	0.000	0.000	0.087	0.913	
	27	-9.200	-5.253	0.000	0.000	0.000	0.057	0.943	
⊙ log <u>B</u> / lambda	28	-9.400	-5.062	0.000	0.000	0.000	0.036	0.963	
C Empty	29	-9.600	-4.868	0.000	0.000	0.000	0.023	0.977	Y
			1 070			0.000		>	

10. Return to the input by choosing "Chemical matrix" in the View menu and simulate a sea-water by changing the background electrolyte concentration to 700 mM.

Input for Solgaswate	er Calculation		
Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each component	Input data: Surfaces
Background electrolyte Charge Conc Cation 1 71 Anion 1 70 Ionic strength model None Debye-Hückel Ext. Debye-Hückel Güintelberg Davies d 0.3 C Eitzer	(mM) Mark the 00 H+ in but 00 Charged b 0.2 Model Lindgr Nordic Nordic	parameters e species that represent: lk phase Donnan species based on Donnan on described by en ef al. Pulp Paper Res. J.	Target Temperature and Epsilon Temperature: 25 Degrees Celsius Epsilon: 78.54
$\log f = -Az^2 \left\{ \frac{\sqrt{I}}{1 + \sqrt{I}} z \text{ is the charge of a sp} z \text{ is the charge of a sp} z \text{ is the charge of a sp} z \text{ is the set.} \right\}$	ecies and d a consta	nt all	Calculate

11. Calculate, and note that the previously defined column contents are automatically used to report the results. If desired, these contents can of course be exchanged.

Display Calculation Results								
Define Column Contents	Calculation	Results:						
	Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7 🔽
Column No: Component/Species:	Spec/Comp:	H+	Al 3+	Al 3+	AIOH 2+	AI(0H)2 +	A(0H)3 (aq)	A(0H)4 -
1 ÷ H+	Content:	log ({a}M)	log Tf (M)	Fi (aq) (Al 3+)		Fi (aq) (Al 3+)	Fi (aq) (Al 3+)	
	1	-4.000	-4.000	0.972	0.023	0.005	0.000	0.000
C [x] (mM) Conc.	2	-4.200	-4.000	0.952	0.036	0.012	0.000	0.000
○ log ([x]/M)	3	-4.400	-4.000	0.915	0.055	0.029	0.001	0.000
○ - log [[x]/M]	4	-4.600	-4.106	0.848	0.080	0.068	0.004	0.000
	5	-4.800	-4.641	0.730	0.110	0.146	0.014	0.000
(M) Activity	6	-5.000	-5.118	0.550	0.131	0.277	0.042	0.000
log {a} ({a}/M)	7	-5.200	-5.509	0.340	0.128	0.430	0.102	0.000
C Tf (mM) Total Conc. in Fluid	8	-5.400	-5.801	0.167	0.100	0.532	0.200	0.001
C log(<u>I</u> f /M)	9	-5.600	-6.010	0.068	0.064	0.543	0.323	0.002
	10	-5.800	-6.158	0.024	0.036	0.481	0.455	0.004
C Ts (mM) Total Conc. in Solution	11	-6.000	-6.263	0.008	0.018	0.387	0.579	0.008
C Tc (mmol/dm3) Total Conc.	12	-6.200	-6.336	0.002	0.009	0.289	0.686	0.014
○ log(Tc /M)	13	-6.400	-6.384	0.001	0.004	0.204	0.766	0.026
	14	-6.600	-6.413	0.000	0.002	0.137	0.818	0.043
	15	-6.800	-6.424	0.000	0.001	0.089	0.840	0.071
C Z None	16	-7.000	-6.421	0.000	0.000	0.056	0.833	0.111
C n-bag None 🖃	17	-7.200	-6.402	0.000	0.000	0.034	0.798	0.168
	18	-7.400	-6.366	0.000	0.000	0.020	0.735	0.246
C ∀t (cm <u>3</u>)	19	-7.600	-6.310	0.000	0.000	0.011	0.646	0.343
C Vtot / Donnan volume (cm3)	20	-7.800	-6.232	0.000	0.000	0.006	0.540	0.454
C Dominating Species	21	-8.000	-6.131	0.000	0.000	0.003	0.427	0.570
	22	-8.200	-6.006	0.000	0.000	0.001	0.321	0.678
C Conc. Surface Phase (g/dm3)	23	-8.400	-5.862	0.000	0.000	0.001	0.230	0.770
C Surface Pot. (mV) None 💌	24	-8.600	-5.700	0.000	0.000	0.000	0.159	0.841
C Surf. Cha. (mol/dm3) None 🚽	25	-8.800	-5.526	0.000	0.000	0.000	0.106	0.894
C Ionic Strength (mM)	26	-9.000	-5.344	0.000	0.000	0.000	0.070	0.930
	27	-9.200	-5.155	0.000	0.000	0.000	0.045	0.955
○ log <u>B</u> / lambda	28	-9.400	-4.963	0.000	0.000	0.000	0.029	0.971
C Empty	29	-9.600	-4.767	0.000	0.000	0.000	0.019	0.981
	<			0.000	0.000	0.000		• • • • • • • • • • • • • • • • • • •

5.6 Temperature dependent constants (H⁺-Cu²⁺-acetic acid)

Task: Calculate the distribution of species containing acetic acid between pH 2 and 5 in an acetic acid-copper(II) system at 60°C using the formation constants evaluated at 25°C and reaction enthalpy values.

1. The following equilibrium reactions describe the actual chemical system (Critical Stability Constants, Volume 6). The constants are valid at 25°C. The corresponding reaction enthalpy values are listed in the last column.

		log β	ΔH (kJ/mole)
1	$H_2O \rightleftharpoons H^+ + OH^-$	-14.00	55.9
2	$H^+ + Ac^- \rightleftharpoons HAc$	4.76	0.42
3	$Cu^{2+} + Ac^{-} \rightleftharpoons CuAc^{+}$	2.21	4.18
4	$Cu^{2+} + 2Ac^{-} \rightleftharpoons CuAc_2(aq)$	3.63	5.86

2. Three components: a) H^+ , HAc and Cu^{2+} , b) H^+ , Ac⁻ and Cu^{2+}

a)	log β	H^{+}	HAc	Cu ²⁺	ΔH	T_1	Equilibria Nos.
H^{+}	0	1	0	0			
HAc	0	0	1	0			
Cu ²⁺	0	0	0	1			
OH	-14.00	-1	0	0	55.9	25	1
Ac	-4.76	-1	1	0	-0.42	25	-2
CuAc ⁺	-2.55	-1	1	1	3.76	25	3 - 2
$Cu(Ac)_2(aq)$	-5.89	-2	2	1	5.04	25	4 - 2 · 2

b)	log β	H^+	Ac	Cu ²⁺	ΔH	T_1	Equilibria Nos.
H^{+}	0	1	0	0			
Ac	0	0	1	0			
Cu ²⁺	0	0	0	1			
OH	-14.00	-1	0	0	55.9	25	1
HAc	4.76	1	1	0	0.42	25	2
CuAc ⁺	2.21	0	1	1	4.18	25	3
$Cu(Ac)_2$ (aq)	3.63	0	2	1	5.86	25	4

The temperature (T_1) is the temperature at which the log β constants are valid. Enthalpy values are set to zero for the components. Enthalpy values should be given in kJ per mole and T_1 in degrees Celsius.

4. Start WinSGW and enter the chemical matrix. Mark the "Use temperature dependent constants" box which will activate the enthalpy and temperature columns.

nem	ical <u>M</u> atrix		for Each io <u>n</u> ent			data: mpon	Each ent	Input data: Surfaces Ionic Media, Donnan and Ionic Media, Donnan an		data: ompon		Įnpu	it data:	Surfaces	Ionic Media, Donnan a Iemperature									
	Data File: E	kempel5			'pe	qr' Ma	trix					<u> </u>		Data File:			'P	qr' Ma	trix					^
	Species		log B	C×	H+	HAc	Cu	dH (kJ)	T1	Phase	Usage			Species	log B	C×				dH (kJ)	T1	Phase	Usage	
1	H+		0	С	1	0	0			Soluble	Use		_	H+	0	С	1	0	0			Soluble	Use	
2	HAc		0	С	0	1	0			Soluble	Use			Ac-	0	С	0	1	0			Soluble	Use	
3	Cu 2+		0	С	0	0	1			Soluble	Use			Cu 2+	0	С	0	0	1			Soluble	Use	
4	он -		-14		-1	0	0	55.9	25	Soluble	Use		4	OH-	-14		-1	0	0	55.9	25	Soluble	Use	
5	Ac ·		-4.76		-1	1	0	-0.42	25	Soluble	Use			HAc	4.76		1	1	0	0.42	25	Soluble	Use	
6	CuAc +		-2.55		-1	1	1	3.76	25	Soluble	Use		- 6	CuAc +	2.21		0	1	1	4.18	25	Soluble	Use	
7	Cu(Ac)2 (aq)		-5.89		-2	2	1	5.04	25	Soluble	Use		1	Cu(Ac)2 (aq)	3.63		0	2	1	5.86	25	Soluble	Use	
8										Soluble	Use		- 1									Soluble	Use	
9										Soluble	Use		1									Soluble	Use	
10										Soluble	Use		11									Soluble	Use	
11										Soluble	Use		1									Soluble	Use	
12										Soluble	Use		13									Soluble	Use	
13										Soluble	Use	~	1:									Soluble	Use	~
	About		C = Compon Use Ionic Use Donn Calculate a Use Temp	<u>S</u> treng an Mo at a Di	dels fi fferen	orSur itTem	face (iperati	re (<u>2</u> 5 C is		, H)				A <u>b</u> out	*C = Compon □ Use Ionic ; □ Use Donn □ Calculate ↓ □ Use Temp	<u>S</u> trenij an Mo at a D	- idels f ifferer	iorSum ntTerr	face (nperati	ure (<u>2</u> 5 C is		I)		

5. Move to next tab "Variation for each component".

Choose to step pH and to keep the total concentrations of acetic acid and copper constant. (Component 1 H^+ , option 10; Component 2 HAc, option 2; Component 3 Cu^{2+} , option 2).

6. On the "Input data: Each component" tab, enter the start value "log {a}", step length "Step" for the first component H⁺, the total concentration of acetic acid and copper "Tc" and the number of points.

nput for Solg	aswater					~	
Chemical <u>M</u> at	rix		n for Eac po <u>n</u> ent	h I	Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan a <u>I</u> emperature
	F	+	HAc	Cu 2+	٦		
Tc (r			10	5			
log Tc							
		2					
To Byr. (r				2	_		
		.1					
Final va	alue -	5		8	<u>+</u>		
	1				_		
	2	2					
	4	3		2			
In a second second	5				-		
Irregular variation	6				-		
	7				-		
	8						
	9						
	10				-		
Initial volu St No. of poi	ep	m m	varie irregula No. of p	ar groups in			
			Fredor	inance o	alagram j		C <u>a</u> lculate

7. Move to the "Ionic Media, Donnan and Temperature" tab and enter the target temperature.

Input for Solgaswater Calcul	ation	
Chemical <u>M</u> atrix Variation I Compo		Input data: Surfaces Ionic Media, Donnan and Temperature
Background electrolyte Charge Conc. (mM) Cation 1 0 Anion 1 0 Ionic strength model © None © Debye-Hückel 0 © Ext. Debye-Hückel 0 © Güntelberg © © Devies 0 © Bitzer No Ionic Strength Model Select	Donnan parameters Mark the species that represent: H+ in bulk phase Charged Donnan surface species Model based on Donnan equation described by Lindgren <i>et al.</i> Nordic Pulp Paper Res. J.	Target Temperature and Epsilon Temperature: 60 Degrees Celsius Epsilon: 78.54
		Calculate

8. Calculate

9. Results

View $-\log[H^+]$ and the distribution (Fi) of the acetic acid containing species (HAc, Ac⁻, CuAc⁺ and Cu(Ac)₂(aq)). (Col. 1: H⁺, $-\log\{[x]/M\}$; Col. 2: HAc, Fi (aq) HAc; Col. 3: Ac⁻, Fi (aq) HAc; Col. 4: CuAc⁺, Fi (aq) HAc; Col. 5: Cu(Ac)₂(aq), Fi (aq) HAc).

There is a short-cut to view the distribution of all species containing a specific component. By choosing the actual component in the Component/species box and "Fi of selected component in all species in solution" from the Column Contents menu the distribution of all species containing the component is shown. The short-cut key for this is " $\langle CTRL \rangle + F$ ".

Display Calculation Results									×	Display Calculation Results								
Define Column Contents	Calculation								_	Define Column Contents	Calculation							
Column No: Component/Species:	Column	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7	^		Column	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
	Spec/Comp:	H+	HAo	Ac -	CuAo +	Cu(Ac)2 (aq)				Column No: Component/Species:	Spec/Comp:	H+	Ac-	HAc	CuAc +	Cu(Ac)2 (aq)		
5 🕂 Cu(Ac)2 (aq) 💌	Content	 log ([x]Al) 	Fi (aq) (HAc)	Fi (aq) (HAc)	Fi (aq) (HAc)	Fi (aq) (HAo)				5 🗧 Cu(Ac)2 (aq) 🔹	Content:	 log ([x]A0) 	Fi (aq) (Ac-)	Fi (aq) (Ac-)	Fi (aq) (Ac-)	Fi (aq) (Ac-)		
		2.000	0.997	0.002	0.002	0.000					1	2.000	0.002	0.997	0.002	0.000		
C [x] (mM) Conc.	2	2.100	0.996	0.002	0.002	0.000				(m) [x] (mM) Conc.	2	2.100	0.002	0.996	0.002	0.000		
log ([x]/M)	3	2.200	0.995	0.003	0.003	0.000				○ log [[x]/M]	3	2.200	0.003	0.995	0.003	0.000		
C : log ([x]/M)	4	2.300	0.993	0.003	0.003	0.000				C · log [[x]/M]	4	2.300	0.003	0.993	0.003	0.000		
	5	2.400	0.992	0.004	0.004	0.000					5	2.400	0.004	0.992	0.004	0.000		
C (a) (M) Activity	6	2.500	0.990	0.005	0.005	0.000				C (a) (M) Activity	6	2.500	0.005	0.990	0.005	0.000		
C log (a) ((a)/M)		2.600	0.987	0.007	0.006	0.000				○ log (a) ((a)/M)	7	2.600	0.007	0.987	0.006	0.000		
C Tf (mM) Total Conc. in Fluid	8	2.700	0.984	0.008	0.008	0.000				C Tf ImMI Total Conc. in Fluid	8	2.700	0.008	0.984	0.008	0.000		
C log[[Tf]/M]	9	2.800	0.979	0.011	0.010	0.000				C log([]f]/M]	9	2.800	0.011	0.979	0.010	0.000		
	10	2.900	0.974	0.013	0.012	0.000					10	2.900	0.013	0.974	0.012	0.000		
C Ts (mM) Total Conc. in Solution	11	3.000	0.968	0.017	0.015	0.000				C Ts (mM) Total Conc. in Solution	11	3.000	0.017	0.968	0.015	0.000		
C To (mmo)/dm3) Total Cono.	12	3.100	0.960	0.021	0.019	0.000				C To (mmo)/dm3) Total Conc.	12	3.100	0.021	0.960	0.019	0.000		
C log[[Tc]/M]	13	3.200	0.950	0.026	0.024	0.000				C log[[Tc]/M]	13	3.200	0.026	0.950	0.024	0.000		
← Fi(ag) / C Fi(s) HAc -	14	3.300	0.938	0.032	0.029	0.001					14	3.300	0.032	0.938	0.029	0.001		
	15	3.400	0.924	0.040	0.036	0.001				Fi(ag) / C Fig) Ac ▼	15	3.400	0.040	0.924	0.036	0.001		
C Z None 💌	16	3.500	0.907	0.049	0.043	0.001				C Z None 💌	16	3.500	0.049	0.907	0.043	0.001		
C n-bar None 👻	17	3.600	0.886	0.060	0.052	0.002					17	3.600	0.060	0.886	0.052	0.002		
	18	3.700	0.861	0.074	0.062	0.003					18	3.700	0.074	0.861	0.062	0.003		
C Vt (cm3)	19	3.800	0.833	0.090	0.074	0.004				C Vt (cm3)	19	3.800	0.090	0.833	0.074	0.004		
C Vtot / Donnan volume (cm3)	20	3.900	0.800	0.108	0.086	0.005				C Vtot / Donnan volume (cm3)	20	3.900	0.108	0.800	0.086	0.005		
C Dominating Species	21	4.000	0.763	0.130	0.100	0.007				C Dominating Species	21	4.000	0.130	0.763	0.100	0.007		
	22	4.100	0.721	0.155	0.114	0.010					22	4.100	0.155	0.721	0.114	0.010		
C Conc. Surface Phase (g/dm3)	23	4.200	0.675	0.183	0.129	0.013				C Conc. Surface Phase (g/dm3)	23	4.200	0.183	0.675	0.129	0.013		
C Surface Bot (mV) None 💌	24	4.300	0.626	0.213	0.144	0.017				C Surface Pot. (mV) None 💌	24	4.300	0.213	0.626	0.144	0.017		
C Surf. Cha. (mol/dm3) None	25	4.400	0.574	0.246	0.158	0.022				C Surf. Cha. (moVdm3) None	25	4.400	0.246	0.574	0.158	0.022		
C Ionic Strength (mM)	26	4.500	0.520	0.281	0.171	0.027					26	4.500	0.281	0.520	0.171	0.027		
	27	4.600	0.466	0.317	0.184	0.033				C Jonic Strength (mM)	27	4.600	0.317	0.466	0.184	0.033		
⊂ log <u>B</u> / lambda	28	4.700	0.413	0.353	0.195	0.039				⊂ log <u>B</u> /lambda	28	4.700	0.353	0.413	0.195	0.039		
C Empty	29	4.800	0.361	0.389	0.205	0.045				C Empty	29	4.800	0.389	0.361	0.205	0.045		
	<	1 000	0.010			0.054		>	-			1 000	0.000	0.040	0.011			
	N 110							2			N L		_					>

As seen, identical results are obtained regardless of component choice.

10. Plotting the results Plot Fi as a function of pH.

5.7 Donnan equilibrium (H⁺-Na⁺-Ca²⁺-fibre)

Task: Calculate the concentrations of sodium (1mM) and calcium (1mM) ions in the fibre volume and in the suspension liquid (according to the Donnan theory) between pH 2 and 7. (The Donnan theory applied to wood fibre systems has been described in detail in the work by Lindgren, Wiklund and Öhman (Nordic Pulp Paper Res. J. 16(1), 24).

1. The following equilibrium reactions describe the actual chemical system.

		$\log \beta$
1	$H_2O \rightleftharpoons H^+ + OH^-$	-14
2	$\equiv \operatorname{COOH} \rightleftharpoons \operatorname{H}^{+} + \equiv \operatorname{COO}^{-}$	-3.40

Additional information about the fibre system:						
Surface site concentration	0.31mM					
Solid phase concentration	10g/dm^3					
Specific surface area	$100 {\rm m}^2/{\rm g}$					
Specific capacitance	0.27F/m ²					
Specific Donnan volume	1.4ml/g					

In this example the Constant Capacitance Model is used to describe the electric double layer at the fibre/water interface.

2. Four components: H^+ , =COOH, Na⁺ and Ca²⁺.

3. The chemical matrix with species charge(z) and surface charges (Q0, Q1 and Q2). Index "f" represents ions in the fibre phase (Donnan phase) and "s" ions in the surrounding suspension liquid.

	log β	H^{+}	≡COOH	Na ⁺	Ca ²⁺	Q ₀	Q ₁	Q ₂	Z
H_{s}^{+}	0	1	0	0	0				1
≡COOH	0	0	1	0	0	0	0	0	
Na ⁺ s	0	0	0	1	0				1
Ca ²⁺ s	0	0	0	0	1				2
OHs	-14	-1	0	0	0				-1
≡COO⁻	-3.40	-1	1	0	0	-1	0	0	
H_{f}^{+}	0	1	0	0	0				1
Na ⁺ _f	0	0	0	1	0				1
Ca ²⁺ _f	0	0	0	0	1				2
OH _f	-14	-1	0	0	0				-1

All mobile species (not surface complexes) should be entered twice, in both suspension liquid phase and Donnan phase, in the matrix. The log β for a species in the fibre phase should be the same as the log β in the suspension liquid phase.

4. Start WinSGW and enter the matrix. Mark the "Use Donnan models for surface calculation" box which will activate the species charge column (z) and the "Ionic media, Donnan and Temperature" tab. In WinSGW calculations it is only possible to involve Donnan equilibrium if a surface is present. Remember to change the Phase properties for the species in the fibre phase to "Donnan".

Chemical Matrix Variation for Each Component					Input data: Each component Input dat						data: Surfaces Ionic Media, Doni Iemperatu				
	Data File: ex6					'pqr'	Matrix		S	urface	= 1	Ion Str.			P
	Species		log B	C×	H+	=C	Na+	Ca2	QO	Q1	Q2	z	Phase	Usage	\mathbf{F}
1	H+		0	С	1	0	0	0	0	0	0	1	Soluble	Use	
2	=C00H		0	С	0	1	0	0	0	0	0	0	Surf.Comp.	Use	
3	Na+		0	С	0	0	1	0	0	0	0	1	Soluble	Use	
4	Ca2+		0	С	0	0	0	1	0	0	0	2	Soluble	Use	
5	=COO-		-3.4		-1	1	0	0	-1	0	0	0	Surface	Use	
6	OH-		-14		-1	0	0	0	0	0	0	-1	Soluble	Use	
7	H+ f		0		1	0	0	0	0	0	0	1	Dopnan	Use	
8	Na+ f		0		0	0	1	0	0	0	0	1	Donisan	llse	
9	Ca 2+ f		0		0	0	0	1	0	0	0	2	k cell to select Donnan	Use	
10	OH- f		-14		-1	0	0	0	0	0	0	-1	Donnan	Use	
11													Soluble	Use	
12													Soluble	Use	
13													Soluble	Use	
		*C	= Compon	ents	,										1
		Г	Use Ionic (Streng	jth Ca	lculat	ons								
		~	Use Donn	an Mo	idels fi	or Su	face (Comple	exatio	n					
		1 -	Calculate a	ataD	ifferen	t Tem	perati	ure (25	5 C is 1	defaul	H)				

5. Move to next tab "Variation for each component".

Choose to step pH and to keep the total concentration of remaining components constant. (Component 1 H^+ , option 10; Component 2 =COOH, option 2;

Component 3 Na⁺, option 2; Component 4 Ca²⁺, option 2; Surface 1 \equiv COOH, option 20).

6. On the "Input data: Each component" tab, enter the start value "log {a}", step length "Step" for the first component H⁺, the total concentration of fibre sites, sodium and calcium "Tc" and the number of points.

Chemical <u>M</u> atrix	al <u>M</u> atrix Variation for Each Compo <u>n</u> ent			t data: Each om <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan Iemperature	
	H+	=C00H	Na+	Ca2+	1		
Tc (mM)		0.31	1	1			
log [T cl (M)							
log {a}	-2						
Tc Byr. (mM)							
Step	-0.1						
Final value	-7						
1		3			_		
2		2					
3		3					
4							
Irregular 5		<u></u>			4		
variation 6		2			4		
7		2	X		4		
8		2			4		
10		2			-		
10					<u> </u>		
Initial volume Step No. of points	51	ml Volume varie: ml irregula No. of g Predom	s	agram			

7. Move to next tab "Input data: Surfaces". Enter values for solid phase concentration, capacitance 1, surface area and the specific Donnan volume.

Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each com <u>p</u> onent	Input data: Surfaces	Ionic Media, Donnan an Iemperature
	=COOH		_	
Solid cond				
	p (g/l)			
Solid conc. By				
	2			
	3			
Solid conc. varie:	\$ 4			
irregular (g/l)	5			
	6			
	7 -			
Capacitance 1 (F/m2) 0.27			
Capacitance 2 (
Surface area (m2/g) 100			
Donnan volume	(ml/a) 1.4 <u>r</u>			
9	CCM C DLM C Stem C TLM C			
	TPM C			
Scroll to view re	ferences for the different :	surface models 🔺		
	ler, P.W. and Gamsjäger, H.	, Kolloid Z. u. Z. 🔄		
Polyn	nere, 250, 759 (1972).	•	Calcu	lata

8. Move to the "Ionic Media, Donnan and Temperature" tab and mark the species in the suspension liquid phase that represent the proton and the charged surface species causing the Donnan potential.

Input for Solgaswa	ter Calculation			
Chemical <u>M</u> atrix	Variation for Each Compo <u>n</u> ent	Input data: Each component	Input data: Surfaces	lonic Media, Donnan and <u>T</u> emperature
Background electrol Charge Cc Cation 1 Anion 1 Ionic strength model Mone Debye-Hückel Ext. Debye-Hückel Davies 2 Davies 2 No Ionic Strength M	nc. (mM) Mark the sp 	ecies that represent: whase H+ access = =COO- sed on Donnan described by	Target Temperature and Epsi Temperature: 25 Epsilon: 79.54	lon
			Calcu	late

9. Start the calculation

10. Results

View -log[H⁺] and log c for all sodium and calcium species. In the sixth column view lambda (λ

 $= [H^+]_f / [H^+]_s = [Na^+]_f / [Na^+]_s = ([Ca^{2+}]_f / [Ca^{2+}]_s)^{1/2} = [OH^-]_s / [OH^-]_f).$ (Col. 1: H⁺, -log{[x]/M}; Col. 2: Na⁺, log{[x]/M}; Col. 3: Na⁺_f, log{[x]/M}; Col. 4: Ca²⁺, log{[x]/M}; Col. 5: Ca²⁺_f, log{[x]/M}; Col. 6: None, lambda).

Define Column Contents	Calculation Column:	Column 1	Column 2	Column 3	Column 4	Column 5	Column 6	Column 7
Column No: Component/Species:	Spec/Comp:	H+	Na+	Na+ f	Ca2+	Ca 2+ f		
6 None 💌	Content	- log ([x]/M)	lambda					
	1	2.000	-3.000	-2.989	-3.000	-2.979	1.025	
) [x] (mM) Conc.	2	2.100	-3.000	-2.985	-3.000	-2.970	1.036	
	3	2.200	-3.000	-2.979	-3.001	-2.958	1.050	
) log ([x]/M)	4	2.300	-3.000	-2.972	-3.001	-2.943	1.069	
) _: log ((x)/M)	5	2.400	-3.001	-2.962	-3.001	-2.925	1.092	
) (a) Activity	6	2.500	-3.001	-2.951	-3.002	-2.902	1.122	
🕈 log (a)	7	2.600	-3.001	-2.938	-3.002	-2.876	1.157	
) If (mM) Total Conc. in Fluid	8	2.700	-3.001	-2.923	-3.003	-2.846	1.198	
	9	2.800	-3.002	-2.906	-3.004	-2.813	1.245	
) log (<u>T</u> FT (M)	10	2.900	-3.002	-2.889	-3.004	-2.779	1.297	
) Ts (mM) Total Conc. in Solution	11	3.000	-3.002	-2.871	-3.005	-2.743	1.353	
) To (mmol/dm3) Total Conc.	12	3.100	-3.003	-2.853	-3.006	-2.706	1.413	
) log (Tic (M)	13	3.200	-3.003	-2.834	-3.008	-2.670	1.475	
	14	3.300	-3.004	-2.816	-3.009	-2.634	1.540	
) Fr(ag) / C Fr(s) None 🛛 🝸	15	3.400	-3.004	-2.798	-3.010	-2.599	1.605	
)Z None ▼	16	3.500	-3.004	-2.781	-3.012	-2.565	1.672	
n bar None 🔻	17	3.600	-3.005	-2.765	-3.013	-2.533	1.738	
	18	3.700	-3.005	-2.749	-3.014	-2.501	1.805	
) Vt (om <u>∂</u>)	19	3.800	-3.006	-2.733	-3.016	-2.472	1.872	
) Vtot / Donnan volume (cm <u>3)</u>	20	3.900	-3.006	-2.719	-3.018	-2.443	1.938	
Dominating Species	21	4.000	-3.006	-2.705	-3.019	-2.416	2.003	
	22	4.100	-3.007	-2.691	-3.021	-2.390	2.068	
) Conc. Surface Phase (g/dm <u>3</u>)	23	4.200	-3.007	-2.679	-3.023	-2.365	2.132	
) Surface Ect. (mV) None 💌	24	4.300	-3.008	-2.666	-3.024	-2.341	2.195	
) Surf. Cha. (mol/dm <u>3</u>) None 🔻	25	4.400	-3.008	-2.655	-3.026	-2.319	2.257	
) Ionic Strength (mM)	26	4.500	-3.009	-2.643	-3.028	-2.297	2.318	
	27	4.600	-3.009	-2.633	-3.029	-2.277	2.377	
log <u>B</u> / lambda	28	4.700	-3.009	-2.623	-3.031	-2.258	2.436	
Empt <u>v</u>	29	4.800	-3.010	-2.613	-3.033	-2.239	2.493	

11. Plotting the results

Plot $\log \{[x]/M\}$ for sodium and calcium in both suspension liquid and fibre phase as a function of pH.

In a new diagram, plot lambda (the distribution coefficient) as a function of pH.

5.8 Find the best fitting model for the (H^+ - H_3PO_4) system

Task: Optimise the formation constant for PO_4^{3-} using experimental data. The total concentration of H₃PO₄ is constant during the experiment (10mM) and the following pH values (-log {H⁺})and [PO₄³⁻] are available.

pН	$[PO_4^{3-}](mM)$
9	4E-03
9.8	0.03
10.2	0.07
10.5	0.12
11	0.25
11.2	0.66
11.8	2.2
12	3.2

1. The following model was entered into WinSGW in the first example in this manual.

		$\log \beta^*$
1	$H_2O \rightleftharpoons H^+ + OH^-$	-14.00
2	$H_3PO_4 \rightleftharpoons H_2PO_4 + H^+$	-2.15
3	$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$	-7.20
4	$\mathrm{HPO_4}^{2-} \rightleftharpoons \mathrm{PO_4}^{3-} + \mathrm{H^+}$	-12.35

*Equilibrium constants valid at infinite dilution and at 25°C.

2. Enter the model following the first five steps in the previous example. Change the formation constant for PO_4^{3-} from -12.35 to -11. This entail that the chemical matrix in WinSGW will have the following content.

hemi		n for Each npo <u>n</u> ent			t data: omgon		Input data: Surfaces	Ionic Media, Donnan <u>T</u> emperature
	Data File: Fosfat_Tes	t_Opt		'pgr'	Matrix			^
	Species	log B	C*	H+	H3P	Phase	Usage	
1	H+	0	С	1	0	Soluble	Use	
2	H3P04	0	С	0	1	Soluble	Use	
3	он.	-14		-1	0	Soluble	Use	
4	H2P04 -	-2.15		-1	1	Soluble	Use	
5	HP04 2-	-9.35		-2	1	Soluble	Use	
6	P04 3-	-20.35		-3	1	Soluble	Use	
7						Soluble	Use	
8						Soluble	Use	
9						Soluble	Use	
10						Soluble	Use	
11						Soluble	Use	
12						Soluble	Use	
13						Soluble	Use	•
	Iser comments	C = Compone Use Ionic <u>S</u> Calculate a Use Tempe Use Donna <u>O</u> ptimisation	treng taD r <u>a</u> tur	- ifferer re Dep	nt Temp bender	perature (25 t Constants		

3. Mark the "Optimisation" check box and change the Usage-value for PO_4^{3-} from "Use" to "Optimise logB".

hemi		on for Each mpo <u>n</u> ent			: data: omponi		Input data: Surface	s Ionic Media, Donnan ar Iemperature
	Data File: Optimisatio			<u> </u>	Matrix			<u> </u>
	Species	log B	C*	H+	H3P	Phase	Usage	
1	H+	0	С	1	0	Soluble	Use	
2	H3PO4	0	С	0	1	Soluble	Use	
3	OH-	-14	-	-1	0	Soluble	Use	
4	H2P04 -	-2.15	-	-1	1	Soluble	Use	
5	HP042-	-9.35		-2	1	Soluble	Use	
6	P043-	-20.35		-3	1	Soluble	Optimise logB	
7			-			Soluble	Use	
8	50			<u> </u>		Soluble	Use	
9			-	<u> </u>		Soluble	Use	
10			-	<u> </u>		Soluble	Use	
11				<u> </u>		Soluble	Use	
12 13			-	-		Soluble Soluble	Use	
13	-	*C = Compone	-	ļ		SUILDIE	Use	<u> </u>
1	[[[ser comments	Use Ionic <u>S</u> Calculate a Use Tempe	treng taD r <u>a</u> tur n Mo	ifferer e Dep	it Temp enden	oerature (<u>2</u> 5 (

Up to 10 formation constant and/or capacitance figures could be optimised at the same time.

4. Change to next tab "Variation for each component". For this example we would like to vary pH irregularly (Component 1 H⁺, option 8) and to keep the total phosphoric acid concentration constant (Component 2 H_3PO_4 , option 2).

3 Input for Solgaswater Calculation Dplinisation: Input data Dplinisation: Input data Chemical Matix Component Component H+ 1 1 2 3 4 4 5 6 6 7 6 8 6 9 10 11 C Component 2H3P04 1 1 2 6 3 4 4 5 6 6 7 6 8 6 9 10 11 C Pot with Xaxis Yeak Ye	Solgaswater for Windows	
Image: Second state in the second s	Elle <u>C</u> alculate C <u>o</u> lumn-Contents <u>D</u> iagrams <u>T</u> utorials <u>V</u> iew <u>A</u> dd-ins <u>H</u> elp	
Chemical Matix Variation for Each Component Input data: Surfaces Onc Media, Doman and Lemperature Chose Alternative for Each Component: Imput data: Surfaces Onc Media, Doman and Lemperature Component 11 H- 1 1 2 0 3 4 0 5 6 6 7 0 8 9 1 1 0 1 1 0 1 1 2 0 3 4 0 5 6 6 7 0 8 9 1 1 0 1 1 0 1 1 2 0 3 4 0 5 6 6 7 0 8 9 1 1 0 1 1 0 1 1 2 0 3 0 4 0 5 6 6 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 6 0 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 6 0 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 6 0 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 0 6 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 0 6 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 0 6 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 0 6 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 3 0 4 0 5 0 6 7 0 8 9 1 1 0 1 1 0 1 1 1 2 0 4 0 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Input for Solgaswater Calculation	
Component 1 H+ 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C Component 2H3P04 Incl adjoids 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I D 2 C 2 C 7 C 8 C 9 C 10 C 11 C I D 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2 C 2	Variation for Each Input data: Each Inpu	
1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C Component 2H3P04 1 C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 3 C 4 C 5 C 6 C 7 C 8 C 9 C 10 C 11 C I C 2 C 4 C 7 C 8 C 9 C 10 C 11 C I C 2 C 7 C 8 C 9 C 10 C 11 C I C 2 C 7 C 8 C 9 C 10 C 11 C I C 2 C 7 C 7 C 8 C 9 C 10 C 11 C I C 2 C 7 C 8 C 9 C 10 C 11 C 10 C 10 C 10 C 10 C 10	Chose Alternative for Each Component:	
parameters for the components Te: Total Concentration for the actual component a: Activity for the free amount of the actual component Qption J: Te varies inregularly between each point Qption J: Te varies into constant steps Qption 4: Te varies through varied volume-additions Qption 4: Te varies through activity content volume-additions	1 ∩ 2 ∩ 3 ∩ 4 ∩ 5 ∩ 6 ∩ 7 ∩ 8 ∩ 9 ∩ 10 ∩ 11 ∩ For component [10 dag Component 2H3P04 □ ∩ 1 ∩ 2 ∩ 3 ∩ 4 ∩ 5 ∩ 6 ∩ 7 ∩ 8 ∩ 9 ∩ 10 ∩ 11 ∩ □ ∩ 1 di goids 1 ∩ 2 ∩ 3 ∩ 4 ∩ 5 ∩ 6 ∩ 7 ∩ 8 ∩ 9 ∩ 10 ∩ 11 ∩ □ ∩ 11 ∩ □ ∩ 11 ∩ Plot with X-wais Y negative gain or □ / □ ∩ 11 ∩ □ ∩ 11 ∩ Plot with X-wais Y negative gain or □ / □ ∩ □ ∩ 11 ∩	ent its ∎axis I +/s
Coprion o: log ic varies with <u>constant steps</u>	parameters for the components Te: Total Concentration for the actual component a. Activity for the free amount of the actual component Option 1: To varies imgreadlay between each point Option 2: Te is constant Option 7: Te varies with constant steps	
VinSGW 4.2.8 By Magnus Karlsson & Johan Lindern		2

5. Move to next tab "Input data: Each component". Enter the "log $\{a\}$ " values and the total concentration of phosphoric acid "Tc".

	Solga	swater	for V	Vindows									
Eile	<u>⊆</u> alc	ulate C	olumn-	Contents	Diagrams	Tutoria	ls ⊻iew	Add-ins	Help				
	Inov	at face Co	. la se	unter Co	lculation								1 ^
-	- mþr	11 101 30	Jigas	water ca	псшаног								4
	Ontir	misation: I	Input c	lata									
	200				ation for Ea	-		ata: Each	- <u>_</u>		Ionic Media, Donn		
	Ch	emical <u>M</u> a	atrix		ation for Ea Compo <u>n</u> ent	cn		gonent	1	Input data: Surfaces	<u>T</u> emperature		ł
													ł
				H+	H3P04							- 11	
			(mM)	20	10							- 11	
		log T c	ol (M) Iq {a}	0								- 11	
		To Byr.		U								- 11	
			Step	-1								- 11	
		Final	_			_						- 11	
			1	-9 -9.8		-						- 11	
			3	-10.2		-						- 11	
			4	-10.5								- 11	
			5	-11								- 11	Ł
			6	-11.2 -11.8								- 11	
		Irregular variation		-12								- 11	
			9									- 11	
			10 11									- 11	
			12									- 11	
			13									- 11	
			14			-						- 11	
		Initial vol	ume [ml Volun							- 11	
			Step		vari ml irregul							- 11	
		č	Nop 1		in nogo							- 11	
					No. of	groups ir					Calculate	ΠI	
		No. of po	oints		Predor	ninance	diagram				Calculate		
L	_				_	_							~
<)	11								>
								Win	SG₩	4.2.8 By Magnu	s Karlsson & Johar	n Lindgre	:n //

6. Move to "Optimisation: Input data" tab. Choose PO_4^{3-} in the "Component/Species" box, mark the radio button for free species concentration ([x] (mM) Conc.) and enter the measured PO_4^{3-} concentration into the matrix marked in yellow.

Calculate	Column-Cont	ents <u>D</u> iagrar	ns <u>T</u> utorial	s <u>V</u> iew <u>A</u> dd-ins	<u>H</u> elp			
Input for	Solgaswate	er Calculati	on					
Chemic	al <u>M</u> atrix	Variation fo Compoj		Input data: Ea component		data: Surfaces	lonic Media, ∐emp	. Donnan and erature
Optimisatio dat			I					
	lysed Paramet							
	Component			A		arameters		
1 🗄	P04 3-	-	✓ Use	Column:	Column 1	Column 2	Column 3	-
💽 [x] (mM	I) Conc.	○ log [[x]/M)	Selection:	[x] (mM)			
C To (mh	() Total Conc.	C Sum [x] (n	M) Conc.	Weight:	1			
C Tf (mM] Total Conc.	in Fluid	-	Spec/Comp: 1	P04 3-			
C Ts (mb) Total Conc.			2				
C Empty				3	,			
	Analysed Par	ameter 1	_	4				
weight for				5				
	INPUT	H+	H3P04	6		-		4
	DATA	log ({a}/M)	Tc(mM)		Data	Data	Data -	<u> </u>
	Include	-9.000	10.000		0.004			
	Include	-9.800	10.000	2	0.03			
	Include	-10.200	10.000	3	0.07			
	Include	-10.500	10.000	4	0.12			
	Include	-11.000	10.000					
	Include	-11.200 -11.800	10.000	6	0.66			
	Include Include	-11.800	10.000	- / 8	3.2			
	Include	-12.000	10.000	9	3.2			
	Include	-		10				
	Include			11				
	Include			12				
	Include			13				
	Include			14				
	Include			15				
	Include			16				-1 H
	Include			•			▶	

If you have measured more than one type of data you could add up to fifteen data sets using the remaining columns. If a data point is missing in a data set the abbreviation NaN (Not a Number) could be used to exclude the missing data. Different weights could be applied to the data sets, which will move the resulting model closer to the data set given the highest weight.

7. Start the calculation by pressing a "Calculate" button, using the Calculate menu or the short cut key <F9>.

8. Two windows for the result will open, the normal grid for viewing results from a WinSGW calculation and a window called "Optimisation results".

o p	timisatio	n results							
	Op	misation info. code: 2 SSR tota			4.112E-02	Goodnes	s Of Fit:	0.98497	-
		Variable	Standard o	Standard deviation					
1		log B: PO4 3-		-20.35	-21.691	0.02	25	Move	
2									-
3									-
DX	is as the	calculated different	ence be	tween optimis	ed and measured	value			
201	Column:	Column 1		Column 2	Column	3	Colum	in 4	
	R (weight): SSR total:	4.112E-02 100.0	_						_
01	SSR:	4.112E-02	_						-
	DX:	[x] (mM) PO4 3-							
	1	4.855E-04							
	2	-0.001							
	3	0.002							-
	5	0.186							-
	6	0.014							
	7	0.034							
	8	-0.069		_			_	-	_
									•
_									
						All col	lomns		•
	DX 0.20т								
	0.20I								
	0.10								
	3.10								
	0.00						_		
	-	1 2	3	3 4	56	7	8	9	
	.0.10L			Point	number				
	-0.10*								

The upper table shows the best fitting model found by WinSGW and the overall fit to the experimental data. Sum of Squared Residuals (SSR) is the difference between the model and the experimental data and should be as low as possible. The Goodness of fit value close to one indicates that the resulting model has a good fit to the data. The starting value, the optimised value and the standard deviation for each optimised variable is then listed. By pressing on "Move" in the last column is the optimised value moved to the "Chemical matrix" and will then be used as the starting value in the next optimisation.

In the lower part is the DX figures, the difference between the model and the experimental data, for each data point listed and plotted. The squared sum of the DX figures is equal to the SSR.

9. It is obvious that data point number 5 is strongly deviating from the model. Move back to the Input window (View Chemical matrix) and Click in the first column for data point 5. This will change the value for this point from INCLUDE to EXCLUDE.

_	Chemica	al Matrix	Variation fo		Input data: Eac	h Inpul	: data: Surfaces	Tonic Medi	
1	Optimisatio		Compoj	nent	component			Len	perati
'	optimisation data								
	– Define Ana	vsed Paramel	ters		1				
	Column No	Component			A	nalysed F	arameters		
	1 ÷	P04 3-	•	✓ Use	Column:	Column 1	Column 2	Column 3	-
	● [x] (mM	Conc.	C log ([x]/M)	Selection:	[x] (mM)			
	C To (mM	1 Total Conc.	C Sum [x] (n	nM) Conc.	Weight	1			
		Total Conc.		.,	Spec/Comp: 1	P04 3-			
) Total Conc.			2				
	C Empty				3				
		Analysed Par	ameter: 1	_	4				
	weight for		amoton		5				-
		INPUT	H+	H3P04	6				-
		DATA	log ({a}/M)	Tc (mM)		Data	Data	Data	_
		Include Include	-9.000 -9.800	10.000	1	0.004			
		Include	-9.800	10.000	2	0.03	6		
		Include	-10.200	10.000	4	0.07			
		Exclude	-11.000	10.000	5	0.12			
		Include	-11.200	10.000	6	0.25			
		Include	-11.800	10.000	7	2.2			
		Include	-12.000	10.000	8	3.2			
		Include			9				
					10				
		Include	0						
					11				
		Include							
		Include Include Include Include			11 12 13				
		Include Include Include Include Include			11 12 13 14				
		Include Include Include Include Include Include			11 12 13 14 15				
		Include Include Include Include Include			11 12 13 14				-

10. Start the calculation by pressing a "Calculate" button, using the Calculate menu or the short cut key <F9>.

Op	otimisatio	on results									
	Op	timisation info. co	de: 2	SSR	total:	5.80	D8E-03	Good	ness Of Fit:	0.99931	
		Variable		Start	value	Optimi	sed value	Standa	ard deviation		
1		log B: PO4 3-			-20.35 -21.687				0.016 Mi		
2											
3											
ns	ie ae the	e calculated dif	ference	hetween	ontimier	ad and n	horuseo	value			لند
	Column:	Column 1	Terence	Colur			Column 3	raiac	Colum	n 4	
SS	R (weight):	5.808E-03	3	2.5/01					_ Jun		
	SSR total:	100.0									
	SSR:	5.808E-03									
	DX:	[x] (mM) PO4									
	1	5.287E-04	L								
	2	-0.001				_					
	3	0.002				_					
	4	0.023				_					
	5	Exclude				_					
	6	0.020				_					
	7	0.050				_					
-	0	-0.048		_	_		_		_	_	
									colomns		
	DX							A	colomns		•
	0.10T										
	0.10										
	0.05										
	†										
	0.00		2	3	4	5	6	7		9	
	t		2	3			ь	6	8	э	
	-0.051				Point n	umber				(

Excluding data point 5 reduced the SSR total figure and changed the Goodness of fit value closer to 1.

Detailed information about the optimisation calculation (convergence criteria etc.) can be found under "Help and Show optimisation information codes". The convergence criteria could be changed under "File, Preferences and Optimisation options".